12.?dāng)?shù)列{an}中,a1=1,an+1=3an+4,則數(shù)列{an}的前n項(xiàng)和等于( 。
A.$\frac{{3}^{n+1}-4n-3}{2}$B.$\frac{{3}^{n}-2n-1}{2}$C.$\frac{{3}^{n}-2n+1}{2}$D.3n+1-2n-1

分析 由an+1=3an+4,變形為:an+1+2=3(an+2),利用等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式即可得出.

解答 解:由an+1=3an+4,變形為:an+1+2=3(an+2),
∴數(shù)列{an+2}是等比數(shù)列,首項(xiàng)為3,公比為3.
∴an+2=3n,即an=3n-2,
∴數(shù)列{an}的前n項(xiàng)和=$\frac{3({3}^{n}-1)}{3-1}$-2n=$\frac{{3}^{n+1}-4n-3}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=f(x)的圖象如圖,自變量x從x1變到x2,對(duì)應(yīng)的函數(shù)y從f(x1)變到f(x2),設(shè)△x=x2-x1,確定各圖的中△x,△y,$\frac{△y}{△x}$的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,一豎立在水平對(duì)面上的圓錐形物體的母線長(zhǎng)為4m,一只小蟲(chóng)從圓錐的底面圓上的點(diǎn)P出發(fā),繞圓錐表面爬行一周后回到點(diǎn)P處,則該小蟲(chóng)爬行的最短路程為$4\sqrt{3}m$,則圓錐底面圓的半徑等于( 。
A.1mB.$\frac{3}{2}m$C.$\frac{4}{3}m$D.2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{2x+1}{x}$,數(shù)列{an}滿足:${a_1}=2,{a_{n+1}}=f(\frac{1}{a_n})(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知遞增的等差數(shù)列{an}(n∈N*)的首項(xiàng)a1=1,且a1,a2,a4成等比數(shù)列,則數(shù)列{an}的通項(xiàng)公式an=n;a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿足a1=511,4an=an-1-3(n≥2).
(1)求證:(an+1)是等比數(shù)列;
(2)令bn=|log2(an+1)|,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=xex-alnx,曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(Ⅰ)求f(x)=a(x-1)(ex-a)的單調(diào)區(qū)間;
(Ⅱ)證明:b≤e時(shí),f(x)≥b(x2-2x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的圖象向右平移$\frac{2π}{3}$個(gè)單位后與原圖象重合,則ω的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面內(nèi)兩個(gè)不共線的向量,$\overrightarrow{a}$=x$\overrightarrow{e}$1-3$\overrightarrow{e}$2(x∈R),$\overrightarrow$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2.若$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案