2.若f(x)=3-2x,則|f(x+1)+2|≤3的解集為[0,3].

分析 求出f(x+1),問題轉(zhuǎn)化為:|2x-3|≤3,解出即可.

解答 解:若f(x)=3-2x,
則|f(x+1)+2|=|3-2(x+1)+2|=|2x-3|≤3,
解得:0≤x≤3,
故不等式的解集為[0,3],
故答案為:[0,3].

點評 本題考查了解絕對值不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知曲線C1:y=$\frac{2x}{x+1}$(x>0)及曲線C2:y=$\frac{1}{3x}$(x>0),C1上的點P1的橫坐標(biāo)為a1(0<a1<$\frac{1}{2}$).從C1上的點Pn(n∈N+)作直線平行于x軸,交曲線C2于點Qn,再從點Qn作直線平行于y軸,交曲線C1于點Pn+1.點Pn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}
(Ⅰ)試求an+1與an之間的關(guān)系,并證明:a2n-1<$\frac{1}{2}<{a_{2n}}(n∈{N_+})$;
(Ⅱ)若a1=$\frac{1}{3}$,求證:|a2-a1|+|a3-a2|+…+|an+1-an|<$\frac{4}{3}(n∈{N_+})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知:如圖,BC是半圓O的直徑,D,E是半圓O上兩點,$\widehat{ED}=\widehat{CE}$,CE的延長線與BD的延長線交于點A.
(1)求證:AE=DE;
(2)若$AE=2\sqrt{5},tan∠ABC=\frac{4}{3}$,求CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函數(shù)g(x)=(2x-x2)ex+m,若?x1∈[-4,-2],?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,則實數(shù)m的取值范圍是(  )
A.(-∞,-2]B.(-∞,$\frac{3}{e}$+2]C.[$\frac{3}{e}$+2,+∞)D.(-∞,$\frac{3}{e}$-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)f(sinα+cosα)=sinα•cosα,則f(x)的定義域為[-$\sqrt{2}$,$\sqrt{2}$],$f(sin\frac{π}{6})$的值為-$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{an}前n項和${S_n}={2^n}$,則an=$\left\{{\begin{array}{l}{2,n=1}\\{{2^{n-1}},n≥2}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=3,且對任意的正整數(shù)m,n都有an+m=an•am,若數(shù)列{bn}滿足bn=n-1+log3an,{bn}的前n項和為Bn
(Ⅰ)求an和Bn;
(Ⅱ)令cn=an•bn,dn=$\frac{4n+4}{{B}_{n}•{B}_{n+2}}$,數(shù)列{cn}的前n項和為Sn,數(shù)列{dn}的前n項和為Tn,分別求Sn和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P為橢圓在y軸上的一個頂點,若2b,|$\overrightarrow{{F}_{1}{F}_{2}}$|,2a成等差數(shù)列,且△PF1F2的面積為12,則橢圓C的方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是( 。
A.若a1+a2<0,則a2+a3<0
B.若{an}是正數(shù)數(shù)列,a2+an-1=12,Sn=36.則a3a4的最小值為36
C.若a1<0,則(a2-a1)(a2-a3)>0
D.若0<a1<a2,則a2$>\sqrt{{a}_{1}{a}_{3}}$

查看答案和解析>>

同步練習(xí)冊答案