分析 (1)由正弦定理結(jié)合已知整理可得:sin(A-B)=sin(C-A),即可解得角A的大小;
(2)由余弦定理結(jié)合已知可得b2+c2-bc=9,既有bc=$\frac{(b+c)^{2}-9}{3}≤(\frac{b+c}{2})^{2}$,從而可求b+c的最大值.
解答 (本題滿分15分)
解:(1)∵$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,
∴由$\frac{a}{cosA}$=$\frac{b+c}{cosB+cosC}$得$\frac{sinA}{cosA}=\frac{sinB+sinC}{cosB+cosC}$,
整理可得:sinAcosB-cosAsinB=sinCcosA-cosCsinA,
既有:sin(A-B)=sin(C-A),
∴A-B=C-A或A-B+C-A=π(不合題意,舍去),
即2A=B+C,又A+B+C=π
∴A=$\frac{π}{3}$.
(2)由a2=b2+c2-2bccosA可得b2+c2-bc=9,
即:(b+c)2-3bc=9,
所以bc=$\frac{(b+c)^{2}-9}{3}≤(\frac{b+c}{2})^{2}$,
解得b+c≤6,
當且僅當b=c=3時,b+c有最大值6.
點評 本題主要考查了正弦定理,余弦定理,三角形內(nèi)角和定理,基本不等式的綜合應用,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5+12i | B. | -5-12i | C. | -13+12i | D. | -13-12i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p是假命題 | B. | q是真命題 | C. | p∧(¬q)是真命題 | D. | (¬p)∧q是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com