1.若復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù),則實數(shù)m=1,$\frac{1}{1+z}$=$\frac{1}{5}-\frac{2}{5}i$.

分析 由復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù),得$\left\{\begin{array}{l}{{m}^{2}-1=0}\\{m+1≠0}\end{array}\right.$,求解即可得實數(shù)m的值,得到z=2i,把z=2i代入$\frac{1}{1+z}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡則答案可求.

解答 解:由復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù),
得$\left\{\begin{array}{l}{{m}^{2}-1=0}\\{m+1≠0}\end{array}\right.$,解得:m=1.
則z=2i.
$\frac{1}{1+z}=\frac{1}{1+2i}=\frac{1-2i}{(1+2i)(1-2i)}=\frac{1-2i}{5}$=$\frac{1}{5}-\frac{2}{5}i$.
故答案為:1,$\frac{1}{5}-\frac{2}{5}i$.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,若S9=81,ak-4=191,Sk=10000,則k的值為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,A=30°,C=45°,則$\frac{2a+c}{2a-c}$=3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.口袋內(nèi)有一些大小、形狀完全相同的紅球、黃球和白球,從中任意摸出一球,摸出的球是紅球或黃球的概率為0.4,摸出的球是紅球或白球的概率為0.9,那么摸出的球是黃球或白球的概率為( 。
A.0.5B.0.7C.0.3D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+1≥0}\\{|y|≤2}\end{array}\right.$,則z=x+y的最大值與最小值分別為( 。
A.6,-3B.1,-3C.6,-2D.1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.證明:sin(sin(sin(sinx)))<cos(cos(cos(cosx))),x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖.已知四棱錐P-ABCD,底面ABCD為梯形.PA⊥底面ABCD,AB=BC=2,∠ABC=60°,AD∥BC,AC⊥CD.E為PD中點.
(I)求證:CE∥平面PAB;
(II)若PB與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{4}$,求平面PAB與平面PCD所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面是菱形,∠ABC=60°,PA⊥底面ABCD,E,F(xiàn)分別是BC,PC的中點,點H在PD上,且EH⊥PD,PA=AB=2.
(1)求證:EH∥平面PBA;
(2)求平面FAH與平面EAH所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=at}\end{array}\right.$,(t為參數(shù)),曲線C1的方程為ρ(ρ-4sinθ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于M,N兩點,若|MN|≥2$\sqrt{3}$,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案