19.已知雙曲線的焦點(diǎn)在y軸上,且焦距為2$\sqrt{3}$,焦點(diǎn)到一條漸近線的距離為$\sqrt{2}$,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-y2=1C.y2-$\frac{{x}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-x2=1

分析 設(shè)出雙曲線的方程,利用雙曲線的焦距為2$\sqrt{3}$,焦點(diǎn)到一條漸近線的距離為$\sqrt{2}$,列出方程組,求出幾何量,即可得出雙曲線的標(biāo)準(zhǔn)方程.

解答 解:由題意,設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0.b>0),其上焦點(diǎn)為(0,c),一條漸近線為y=$\frac{a}$x.
∵焦距為2$\sqrt{3}$,焦點(diǎn)到一條漸近線的距離為$\sqrt{2}$,
∴$\left\{\begin{array}{l}{2c=2\sqrt{3}}\\{\frac{bc}{\sqrt{{a}^{2}+^{2}}}=\sqrt{2}}\end{array}\right.$,∴c=$\sqrt{3}$,b=$\sqrt{2}$,
∴a=1,
∴雙曲線的標(biāo)準(zhǔn)方程為${y}^{2}-\frac{{x}^{2}}{2}$=1.
故選:C.

點(diǎn)評 本題考查雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查學(xué)生的計(jì)算能力,正確理解雙曲線的幾何性質(zhì)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ x≥1\\ y≥0\end{array}\right.$,則z=2x+y的最大值為( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線y2=8x上一點(diǎn)P(m,n),F(xiàn)為拋物線的焦點(diǎn),若|PF|=5,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=a|x+b|(a>0且a≠1,b∈R)是偶函數(shù),則下面的結(jié)論正確的是( 。
A.f(b-3)<f(a+2)B.f(b-3)>f(a+2)
C.f(b-3)=f(a+2)D.f(b-3)與f(a+2)的大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某市大型國有企業(yè)按照中央“調(diào)結(jié)構(gòu)、保增長、促發(fā)展”的指示精神,計(jì)劃投資甲乙兩個(gè)項(xiàng)目,前期調(diào)研獲悉,甲項(xiàng)目每投資百萬元需要配套電能2萬千瓦,增加產(chǎn)值200萬元;乙項(xiàng)目每投資百萬元需要配套電能4萬千瓦,增加產(chǎn)值300萬元,根據(jù)該企業(yè)目前資金儲備狀況僅能最多投資3000萬元,配套電能100萬千瓦.
(Ⅰ)假設(shè)企業(yè)在甲、乙兩個(gè)項(xiàng)目投資額分別為x,y(單位:百萬元),請寫出x,y所滿足的約束條件,并在所給出的坐標(biāo)系畫出可行域;
(Ⅱ)計(jì)算如何安排對甲、乙兩個(gè)項(xiàng)目投資額,才能使產(chǎn)值有最大的增加值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{ai}{1+2i}$(a<0),其中i為虛數(shù)單位,|z|=$\sqrt{5}$,則a的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.己知函數(shù)f(x)=|sinx丨一kx(x≥0,k∈R)有且只有三個(gè)零點(diǎn),設(shè)此三個(gè)零點(diǎn)中的最大值為x0,則
$\frac{{x}_{0}}{(1+{{x}_{0}}^{2})sin2{x}_{0}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)A(2,4),向量$\overrightarrow{a}$=(3,4),且$\overrightarrow{AB}$=2$\overrightarrow{a}$,則點(diǎn)B的坐標(biāo)為(8,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{lnx}{x}$+$\frac{x+1}{x}$a.
(1)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)f(x)的極大值,并寫出單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若對任意的x>1,恒有l(wèi)n(x-1)+k+1≤kx成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案