11.現(xiàn)有一圓心角為$\frac{π}{2}$,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動(dòng)點(diǎn)且劣弧$\widehat{PQ}$的長(zhǎng)為2πcm,過P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數(shù),并求出其最大面積是多少?

分析 連接OQ,OP,則∠POQ=$\frac{π}{6}$,求出面積,利用三角函數(shù)知識(shí)求最值,即可得出結(jié)論.

解答 解:連接OQ,OP,則∠POQ=$\frac{π}{6}$.
設(shè)∠QOB=α,多邊形OHPRQT的面積為S,則∠POB=α+$\frac{π}{6}$,α∈(0,$\frac{π}{3}$),
S=12sinα•12cosα+12sin(α+$\frac{π}{6}$)•12cos(α+$\frac{π}{6}$)-12sinα•12cos(α+$\frac{π}{6}$)=(72$\sqrt{3}$-72)sin(2α+$\frac{π}{6}$)+36,
α=$\frac{π}{6}$,即∠POA=∠QOB=$\frac{π}{6}$時(shí),多邊形OHPRQT的面積的最大值為72$\sqrt{3}$-36(cm2).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是在實(shí)際問題中建立三角函數(shù)模型,三角函數(shù)降冪公式及三角函數(shù)的最值,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1,F(xiàn)是棱BC的中點(diǎn),M是線段A1F上的動(dòng)點(diǎn),則△MDD1與△MCC1的面積和的最小值是$\frac{\sqrt{65}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知下面四個(gè)命題:
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣;
(2)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
(3)對(duì)分類變量X和Y的隨機(jī)變量K2的觀測(cè)值k來說,k越小,“X與Y有關(guān)系”的把握程度越大;
(4)在回歸直線方程$\widehat{y}$=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位.
其中所有真命題的序號(hào)是(1)(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,設(shè)命題p:橢圓C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦點(diǎn)在x軸上:命題q:直線l:x-y+m=0與圓O:x2+y2=9有公共點(diǎn).若命題p、命題q中有且只有一個(gè)為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出以下命題:
①若方程x2+2x+m=0有實(shí)根,則m≤2;
②若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線斜率為2,則其離心率為$\sqrt{5}$;
③已知回歸直線的斜率的估計(jì)值為1.2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\hat y=1.2x+0.2$;
④秦九韶算法的特點(diǎn)在于把求一個(gè)n次多項(xiàng)式的值轉(zhuǎn)化為求n個(gè)一次多項(xiàng)式的值;
⑤直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點(diǎn),則“k=1”是“△OAB的面積為$\frac{1}{2}$”必要不充分條件.
其中正確的命題序號(hào)為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分條件,則實(shí)數(shù)m的取值范圍為( 。
A.[9,13]B.(3,9)C.[9,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC的邊長(zhǎng)為2的等邊三角形,動(dòng)點(diǎn)P滿足$\overrightarrow{BP}=\frac{1}{2}{sin^2}θ•\overrightarrow{BC}+{cos^2}θ•\overrightarrow{BA}(θ∈R)$,則$(\overrightarrow{PB}+\overrightarrow{PC})•\overrightarrow{PA}$的取值范圍是[-$\frac{3}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=aex-x-2a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,\frac{1}{e}})$B.$({0,\frac{1}{e}})$C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=0,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.0D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案