15.判斷下列集合間的關(guān)系:
(1)A={-1,1},B={(-1,1)};
(2)A={x|x是等邊三角形},B={x|x是等腰三角形};
(3)A={x|-1≤x<3},B={x|x-2≤1};
(4)A={x|x=2n-1,n∈N*},B={x|x=2n+1,n∈N*}.

分析 根據(jù)子集和真子集的定義,結(jié)合已知中給定的四組集合,逐一分析,可得結(jié)論.

解答 解:(1)A={-1,1}是數(shù)集,B={(-1,1)}是點(diǎn)集,故A,B之間不存在包含關(guān)系;
(2)∵A={x|x是等邊三角形},B={x|x是等腰三角形},
∴A?B;
(3)∵A={x|-1≤x<3},B={x|x-2≤1}={x|x≤3},
∴A?B;
(4)A={x|x=2n-1,n∈N*}={正奇數(shù)},B={x|x=2n+1,n∈N*}={不小于3的正奇數(shù)}.
∴B?A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是子集和真子集的定義,熟練掌握并正確理解子集和真子集的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直且OA=OB=OC,△ABC為等邊三角形,M為△ABC內(nèi)部一點(diǎn),點(diǎn)P在OM的延長(zhǎng)線上,且PA=PB.PA=$\sqrt{5}$OC,OP=$\sqrt{6}$OC.
(1)證明:AB⊥平面POC;
(2)求二面角P-OA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R,求:
(1)函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,已知正方形ABCD的邊長(zhǎng)為1,E在CD延長(zhǎng)線上,且DE=CD.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿正方形ABCD的邊按逆進(jìn)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其中$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,則下列命題正確的是①②.(填上所有正確命題的序號(hào))
①當(dāng)點(diǎn)P為AD中點(diǎn)時(shí),λ+μ=1;
②λ+μ的最大值為3;
③若y為給定的正數(shù),則一存在向量$\overrightarrow{AP}$和實(shí)數(shù)x,使$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\frac{\overrightarrow{AP}}{|\overrightarrow{AP}|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若復(fù)數(shù)z滿足$\frac{1-z}{1+z}$=i,則|$\overline{z}$+1|的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤1}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y-1}{x+1}$的取值范圍是(  )
A.[-$\frac{1}{2}$,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-1,$\frac{1}{2}$]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知tan(α+β)=3,tan(α-β)=5,則tan2α=( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{4}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,點(diǎn)A(1,$\frac{\sqrt{3}}{2}$)在橢圓C上
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)橢圓C的左頂點(diǎn)B且互相垂直的兩直線l1,l2分別交橢圓C于點(diǎn)M,N(點(diǎn)M,N均異于點(diǎn)B),試問(wèn)直線MN是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓M:(x-2)2+y2=4,過(guò)點(diǎn)(1,1)的直線中被圓M截得的最短弦長(zhǎng)為2$\sqrt{2}$,類比上述方法:設(shè)球O是棱長(zhǎng)為4的正方體的外接球,過(guò)該正方體的棱的中點(diǎn)作球O的截面,則最小截面的面積為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案