A. | [-$\frac{1}{2}$,1] | B. | [-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [-1,$\frac{1}{2}$] | D. | [-1,1] |
分析 作出不等式組對應的平面區(qū)域,利用直線斜率的公式進行求解即可.
解答 解:作出不等式組對應的平面區(qū)域,$\frac{y-1}{x+1}$的幾何意義是區(qū)域內(nèi)的點到定點D(-1,1)的斜率,
由圖象知CD的斜率最小,AD的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x-y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
此時CD的斜率k=$\frac{-1}{1+1}$=$-\frac{1}{2}$,
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
此時AD的斜率k=$\frac{3-1}{1+1}=\frac{2}{2}=1$,
即$\frac{y-1}{x+1}$的取值范圍是[-$\frac{1}{2}$,1],
故選:A
點評 本題主要考查線性規(guī)劃的應用以及直線斜率的計算,利用數(shù)形結(jié)合以及直線斜率公式確定最優(yōu)解是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 1 | C. | $\frac{2}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5}{8}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com