2.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為( 。
A.10B.13C.-10D.-13

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第一次執(zhí)行循環(huán)體后,S=-1,k=2,滿足繼續(xù)循環(huán)的條件;
第二次執(zhí)行循環(huán)體后,S=3,k=3,滿足繼續(xù)循環(huán)的條件;
第三次執(zhí)行循環(huán)體后,S=-6,k=4,滿足繼續(xù)循環(huán)的條件;
第四次執(zhí)行循環(huán)體后,S=10,k=5,不滿足繼續(xù)循環(huán)的條件;
故選:A

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<2),設(shè)點A(2,0),B(0,b)與直線AB斜率相同的直線與橢圓交于M,N兩點,設(shè)MN中點的軌跡為C.
(1)當(dāng)b2=3時,求曲線C的方程;
(2)已知拋物線y2=2px(p>0)的焦點與橢圓右焦點重合,若拋物線與曲線C有有且只有一個交點,求b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點 $(\frac{6}{5},\frac{4}{5})$,其離心率為$\frac{{\sqrt{3}}}{2}$,設(shè)A,B,M是橢圓C上的三點,且滿足 $\overrightarrow{OM}=cosα•\overrightarrow{OA}+sinα•\overrightarrow{OB}$$(α∈(0,\frac{π}{2}))$,其
中O為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:△OAB的面積是一個常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知(1-x)6=a0+a1x+a2x2+…+a6x6,則|a0|+|a1|+…+|a6|=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個三位自然數(shù)$\overline{abc}$的百位,十位,個位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)a>b且c>b時稱為“凹數(shù)”.若a,b,c∈{4,5,6,7,8},且a,b,c互不相同,任取一個三位數(shù)$\overline{abc}$,則它為“凹數(shù)”的概率是( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓錐底面的半徑為10cm,軸截面是直角三角形,則圓錐的全面積是100$π+100\sqrt{2}π$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:mx2+3my2=1(m>0)的長軸長為2$\sqrt{6}$,O為坐標(biāo)原點.
(1)求橢圓C的方程和離心率;
(2)設(shè)點A(3,0),動點B在y軸上,動點P在橢圓C上,且P在y軸的右側(cè),若|BA|=|BP|,求四邊形OPAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.為貫徹落實中央1號文件精神和新形勢下國家糧食安全戰(zhàn)略部署,農(nóng)業(yè)部把馬鈴薯作為主糧產(chǎn)品進(jìn)行產(chǎn)業(yè)化開發(fā),記者獲悉,我國推進(jìn)馬鈴薯產(chǎn)業(yè)開發(fā)的目標(biāo)是力爭到2020年馬鈴薯種植面積擴(kuò)大到1億畝以上.山東省某種植基地對編號分別為1,2,3,4,5,6的六種不同品種在同一塊田地上進(jìn)行對比試驗,其中編號為1,3,5的三個品種中有且只有兩個相鄰,且2號品種不能種植在兩端,則不同的種植方法的種數(shù)為( 。
A.432B.456C.534D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A(2,1),B(3,-1),C(5,7),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CA}$=$\overrightarrow{c}$.
(1)求3$\overrightarrow{a}$-$\overrightarrow$-2$\overrightarrow{c}$;
(2)若$\overrightarrow$=x$\overrightarrow{a}$+y$\overrightarrow{c}$,求實數(shù)x,y的值.

查看答案和解析>>

同步練習(xí)冊答案