12.已知A(2,1),B(3,-1),C(5,7),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CA}$=$\overrightarrow{c}$.
(1)求3$\overrightarrow{a}$-$\overrightarrow$-2$\overrightarrow{c}$;
(2)若$\overrightarrow$=x$\overrightarrow{a}$+y$\overrightarrow{c}$,求實數(shù)x,y的值.

分析 (1)由題意可得$\overrightarrow{a}$=$\overrightarrow{AB}$=(1,-2),$\overrightarrow$=$\overrightarrow{BC}$=(2,8),$\overrightarrow{c}$=$\overrightarrow{CA}$=(-3,-6);從而利用坐標(biāo)運算求解;
(2)由題意得(2,8)=x(1,-2)+y(-3,-6),從而得到方程組,解方程組即可.

解答 解:已知A(2,1),B(3,-1),C(5,7),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CA}$=$\overrightarrow{c}$.
(1)∵A(2,1),B(3,-1),C(5,7),
∴$\overrightarrow{a}$=$\overrightarrow{AB}$=(3,-1)-(2,1)=(1,-2),
$\overrightarrow$=$\overrightarrow{BC}$=(2,8),$\overrightarrow{c}$=$\overrightarrow{CA}$=(-3,-6);
∴3$\overrightarrow{a}$-$\overrightarrow$-2$\overrightarrow{c}$=3(1,-2)-(2,8)-2(-3,-6)
=(7,-2);
(2)∵$\overrightarrow$=x$\overrightarrow{a}$+y$\overrightarrow{c}$,∴(2,8)=x(1,-2)+y(-3,-6),
∴2=x-3y,8=-2x-6y,
解得,x=y=-1.

點評 本題考查了平面向量的基本定理的應(yīng)用及坐標(biāo)運算的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出S的值為( 。
A.10B.13C.-10D.-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點$A(\sqrt{3},\frac{1}{2})$,離心率為$\frac{{\sqrt{3}}}{2}$,點F1,F(xiàn)2分別為其左、右焦點.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點P,Q,且$\overrightarrow{OP}⊥\overrightarrow{OQ}$?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)an=n•2n(n∈N*),求數(shù)列{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=sinx,g(x)=x,則下列三個結(jié)論:
①函數(shù)h(x)=$\frac{f(x)}{[g(x)]^{2}}$是奇函數(shù);
②設(shè)函數(shù)m(x)=f(x)g(x),則存在常數(shù)T>0,對任意的實數(shù)x,恒有m(x+T)=m(x)成立;
③若函數(shù)f(x)圖象的兩條相互垂直的切線交于P點,則點P的坐標(biāo)可能為($\frac{3π}{2}$,$\frac{π}{2}$),
其中正確結(jié)論的序號是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$(b>0)的右焦點F2為圓心,2為半徑的圓與雙曲線的漸近線相交,則雙曲線的離心率的范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\overrightarrow{OA}$=(1,0),$\overrightarrow{OB}$=(1,1),(x,y)=$λ\overrightarrow{OA}+μ\overrightarrow{OB}$,若0≤λ≤1≤μ≤2時,z=$\frac{x}{m}$+$\frac{y}{n}$(m>0,n>0)的最大值為2,則m+n的最小值為$\frac{5}{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)D,E分別為線段AB,AC的中點,且$\overrightarrow{BE}$•$\overrightarrow{CD}$=0,記α為$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角,則下述判斷正確的是( 。
A.cosα的最小值為$\frac{\sqrt{2}}{2}$B.cosα的最小值為$\frac{1}{3}$
C.sin(2α+$\frac{π}{2}$)的最小值為$\frac{8}{25}$D.sin($\frac{π}{2}$-2α)的最小值為$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}各項為正數(shù),且a2=4a1,an+1=${a}_{n}^{2}$+2an(n∈N*
(I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)令bn=log3(1+a2n-1),數(shù)列{bn}的前n項和為Tn,求使Tn>345成立時n的最小值.

查看答案和解析>>

同步練習(xí)冊答案