7.圓錐底面的半徑為10cm,軸截面是直角三角形,則圓錐的全面積是100$π+100\sqrt{2}π$cm2

分析 根據(jù)軸截面的性質(zhì)計(jì)算圓錐的母線長,代入面積公式計(jì)算即可.

解答 解:∵圓錐的軸截面是等腰直角三角形,
∴圓錐的高h(yuǎn)=r=10,母線長l=$\sqrt{2}r$=10$\sqrt{2}$.
∴圓錐的全面積為S=πr2+πrl=100π+100$\sqrt{2}$π.
故答案為:100π+100$\sqrt{2}$π.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征,圓錐的面積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),雙曲線S:$\frac{{y}^{2}}{{m}^{2}}$-$\frac{{x}^{2}}{{n}^{2}}$=1(m>0,n>0)的頂點(diǎn)為G1(0,-m),G2(0,m),橢圓Г和雙曲線S都經(jīng)過P(1,$\frac{2\sqrt{3}}{3}$),若四邊形F1G1F2G2為正方形,且這個(gè)正方形的面積為2.
(Ⅰ)求橢圓Г和雙曲線S的方程;
(Ⅱ)是否存在直線l:y=kx+t,使得此直線l與橢圓Г相切、與雙曲線S相交于A,B兩點(diǎn),且滿足|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$$+\overrightarrow{OB}$|?若存在,求出k,t的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an}(n∈N*)中,a1=1,a4=7,則數(shù)列{an}的通項(xiàng)公式an=2n-1;a2+a6+a10+…+a4n+10=(n+3)(4n+11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C的方程為x2+y2+8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的取值范圍為$-\frac{4}{3}≤k≤0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為(  )
A.10B.13C.-10D.-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,Sn=3an-λ(λ為常數(shù)).
(1)求λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{n+1}{{a}_{n}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={x|x2-x-6<0,x∈R},B={y|y=|x|-3,x∈A},則A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC中,邊a,b,c的對(duì)角分別為A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面積;
(Ⅱ)已知函數(shù)f(x)=sinBsin2πx+cosCcos2πx,把函數(shù)y=f(x)的圖象向右平移$\frac{1}{4}$個(gè)單位,然后把所得函數(shù)圖象上點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,即得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[0,2]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$(b>0)的右焦點(diǎn)F2為圓心,2為半徑的圓與雙曲線的漸近線相交,則雙曲線的離心率的范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案