若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:求出導(dǎo)函數(shù),利用函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0得到a,b滿足的條件,利用基本不等式求出ab的最值.
解答: 解:由題意,導(dǎo)函數(shù)f′(x)=12x2-2ax-2b,
∵在x=1處有極值,
∴a+b=6,
∵a>0,b>0,
∴ab≤(
a+b
2
2=9,當(dāng)且僅當(dāng)a=b=3時取等號,
∴ab的最大值等于9.
故答案為:9
點(diǎn)評:本題考查函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值,需注意:一正、二定、三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題
①“am2<bm2”是“a<b”的充分必要條件.
②“矩形的兩條對角線相等”的否命題為假.
③在△ABC中,“∠B=60°”是∠A,∠B,∠C三個角成等差數(shù)列的充要條件.
④△ABC中,若sinA=sinB,則△ABC為直角三角形.
判斷錯誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的兩種廣告牌,其中圖(1)是由兩個等腰直角三角形構(gòu)成的,圖(2)是一個矩形,則這兩個廣告牌面積的大小關(guān)系可用含字母a,b(a≠b)的不等式表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-1,x,-4成等比數(shù)列,則x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中a1+a2+…+an=2n,則通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+ax2+3x+1有極值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①命題“若α=
π
4
,則tanα=1”的逆否命題為假命題;
②命題p:?x∈R,sinx≤1.則¬p:?x0∈R,使sinx0>1;
③“φ=
π
2
+kπ(k∈Z)”是“函數(shù)y=sin(2x+φ)為偶函數(shù)”的充要條件;
④命題p:“?x0∈R,使sinx0+cosx0=
3
2
”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.其中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-3x+2的零點(diǎn)是( 。
A、(1,0),(2,0)
B、(0,1),(0,2)
C、1,2
D、-1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a5+a9-a7=10,則S13的值為(  )
A、130B、260
C、156D、168

查看答案和解析>>

同步練習(xí)冊答案