已知圖1、圖2分別表示A、B兩城市某月1日至6日當(dāng)天最低氣溫的數(shù)據(jù)折線(xiàn)圖(其中橫軸n表示日期,縱軸x表示氣溫),記A、B兩城市這6天的最低氣溫平均數(shù)分別為
.
xA
.
xB
,標(biāo)準(zhǔn)差分別為sA和sB,則它們的大小關(guān)系是(  )
A、
.
xA
.
xB
,sA>sB
B、
.
xA
.
xB
,sA<sB
C、
.
xA
.
xB
,sA<sB
D、
.
xA
.
xB
,sA>sB
考點(diǎn):眾數(shù)、中位數(shù)、平均數(shù)
專(zhuān)題:概率與統(tǒng)計(jì)
分析:本題可以由折線(xiàn)圖上的數(shù)據(jù)做出兩個(gè)城市的平均氣溫和方差,也可以根據(jù)兩個(gè)折線(xiàn)圖的高低和變化的趨勢(shì)即波動(dòng)的大小,得到結(jié)果.
解答: 解:由折線(xiàn)圖可知A市的平均氣溫是
2.5+10+5+7.5+2.5+10
6
=6.25
,
B市的平均氣溫是
15+10+12.5+10+12.5+10
6
=11.7,
由折線(xiàn)圖也可以看出B市的氣溫較高,
可以看出B市的氣溫的變化不大,方差較。
故選D.
點(diǎn)評(píng):本題考查了折線(xiàn)圖以及平均數(shù)和方差的求法;求兩組數(shù)據(jù)的平均值和方差是研究數(shù)據(jù)常做的兩件事,平均值反映數(shù)據(jù)的平均水平,而方差反映數(shù)據(jù)的波動(dòng)大小,從兩個(gè)方面可以準(zhǔn)確的把握數(shù)據(jù)的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2-lg(3-x)
的定義域?yàn)?div id="jn2ewjb" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,|AC|=|BC|=2,∠ACB=90°,M為BC的中點(diǎn),D為以AC為直徑的圓上一動(dòng)點(diǎn),E為直徑AC上的動(dòng)點(diǎn),則
AM
AE
-
AM
DE
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程3x=4-3x和log3(x-1)3=4-3x的解分別為x1和x2,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較a=(
1
3
0.2與b=2 
1
3
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1上的點(diǎn).當(dāng)CE=
1
3
CC1
時(shí),求異面直線(xiàn)A1E與BD1所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程|x2-2x-3|=a有兩個(gè)實(shí)數(shù)根,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+cos(x-
π
6
),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+lnx,g(x)=ex,a∈R.
(1)求f(x)的單調(diào)區(qū)間;(2)若不等式g(x)<
x-m
x
有解,求實(shí)數(shù)m的取值范圍;
(3)定義:對(duì)于函數(shù)y=F(x)和y=G(x)在其公共定義域內(nèi)的任意實(shí)數(shù)x0,稱(chēng)|F(x0)-G(x0)|的值為兩函數(shù)在x0處的差值.證明:當(dāng)a=0時(shí),函數(shù)y=f(x)和f=g(x)在其公共定義域內(nèi)的所有差值都大于2.

查看答案和解析>>

同步練習(xí)冊(cè)答案