分析 2c-a=$\frac{bcosA}{cosB}$,由正弦定理可得:2sinCcosB-sinAcosB=sinBcosA,利用和差公式、三角形內(nèi)角和定理、誘導(dǎo)公式可得:cosB=$\frac{1}{2}$,由正弦定理可得:$\frac{a}{sinA}=\frac{c}{sinC}=\frac{sinB}$=$\frac{4}{sin\frac{π}{3}}$=$\frac{8}{3}$$\sqrt{3}$,再利用和差公式即可得出△ABC的周長(zhǎng)的最大值.
解答 解:∵2c-a=$\frac{bcosA}{cosB}$,
由正弦定理可得:2sinCcosB-sinAcosB=sinBcosA,
∴2sinCcosB=sinAcosB+sinBcosA=sin(A+B)=sinC,
∵sinC≠0,∴2cosB=1,即cosB=$\frac{1}{2}$,
B∈(0,π),解得B=$\frac{π}{3}$.
∴$\frac{a}{sinA}=\frac{c}{sinC}=\frac{sinB}$=$\frac{4}{sin\frac{π}{3}}$=$\frac{8}{3}$$\sqrt{3}$,
∴$a=\frac{8}{3}\sqrt{3}$sinA,c=$\frac{8\sqrt{3}}{3}$sinC,
∴△ABC的周長(zhǎng)=$\frac{8\sqrt{3}}{3}$(sinC+sinA)+4
=$\frac{8\sqrt{3}}{3}$[sinC+sin$(\frac{2π}{3}-C)$]+4
=$\frac{8\sqrt{3}}{3}$$(\frac{3}{2}sinC+\frac{\sqrt{3}}{2}cosC)$+4
=8$sin(C+\frac{π}{6})$+4,
∵C∈$(0,\frac{2π}{3})$,∴$(C+\frac{π}{6})$∈$(\frac{π}{6},\frac{5π}{6})$.
∴$sin(C+\frac{π}{6})$∈$(\frac{1}{2},1]$,
∴△ABC的周長(zhǎng)的最大值為8+4,即12.
故答案為:12.
點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角形內(nèi)角和定理、誘導(dǎo)公式、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{4+2\sqrt{5}}}{5}$ | C. | $\frac{{4+\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}-2}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x5 | B. | (x-1)5-1 | C. | x5+1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,1<f(x)<2 | B. | ?x0∈R,1<f(x0)<2 | ||
C. | ?x∈R,f(x)≥2或f(x)≤1 | D. | ?x0∈R,f(x0)≥2或f(x0)>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com