3.已知函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是( 。
A.f(x)=2sin$\frac{1}{2}$xB.f(x)=2cos2$\frac{1}{4}$xC.f(x)=2cos2$\frac{1}{2}$xD.f(x)=2cos$\frac{1}{2}$x

分析 令x=-2π,可求得f(-2π)=f(2π)=0,從而可得f(x)是以4π為周期的函數(shù),化簡函數(shù),即可得出結(jié)論.

解答 解:∵f(x+4π)=f(x)+f(2π),
∴f(-2π+4π)=f(-2π)+f(2π),
∴f(-2π)=0,
又函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(2π)=0.
∴f(x+4π)=f(x)+0=f(x),
∴f(x)是以4π為周期的函數(shù).
f(x)=2cos2$\frac{1}{4}$x=1+cos$\frac{1}{2}$x,以4π為周期的函數(shù).
故選:B.

點評 本題考查抽象函數(shù)及其應(yīng)用,考查賦值法,求得f(2π)=0是關(guān)鍵,考查函數(shù)的周期性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.時鐘的分針在1點到3點20分這段時間里轉(zhuǎn)過的弧度數(shù)為( 。
A.$\frac{14π}{3}$B.$-\frac{14π}{3}$C.$\frac{7π}{18}$D.$-\frac{7π}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.從一副撲克牌(去掉大、小王,共52張)中隨機(jī)選取一張,給出如下四組事件:
①“這張牌是紅心”與“這張牌是方塊”;
②“這張牌是紅色牌”與“這張牌是黑色牌”;
③“這張牌牌面是2,3,4,6,10之一”與“這張牌是方塊”;
④“這張牌牌面是2,3,4,5,6,7,8,9,10之一”與“這張牌牌面是A,K,Q,J之一”,
其中互為對立事件的有②④.(寫出所有正確的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一質(zhì)點按規(guī)律s=2t3運(yùn)動,則在t=2時的瞬時速度為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(-1,2),若($\overrightarrow{a}$-λ$\overrightarrow$)⊥$\overrightarrow{a}$,則實數(shù)λ的值是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{AB}$=(2,1),$\overrightarrow{BC}$=(-1,k),$\overrightarrow{CD}$=(3,4).
(Ⅰ)若$\overrightarrow{AD}$=(4,6),求k的值;
(Ⅱ)若A,C,D三點共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=asin2x+bcos2x,且滿足a,b∈R,ab≠0,且f($\frac{π}{6}-x$)=f($\frac{π}{6}+x$),則下列說法正確的是( 。
A.|f($\frac{7π}{10}$)|<|f($\frac{π}{5}$)|
B.f(x)是奇函數(shù)
C.f(x)的單調(diào)遞增區(qū)間是[k$π+\frac{π}{6},kπ+\frac{2}{3}π$](k∈Z)
D.a=$\sqrt{3}$b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈R,$\frac{1}{x}$>x,命題q:?x∈R,x2>0,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某經(jīng)銷商計劃銷售一款新型的空氣凈化器,經(jīng)市場凋研發(fā)現(xiàn)以下規(guī)律:當(dāng)每臺凈化器的利潤為x(單位:元,x>0)時,銷售量q(x)(單位:百臺)與x的關(guān)系滿足:若x不超過20,則q(x)=$\frac{1260}{x+1}$;若x大于或等于180,則銷售為零;當(dāng)20≤x≤180時.q(x)=a-b$\sqrt{x}$(a,b為實常數(shù)).
(1)求函數(shù)q(x)的表達(dá)式;
(2)當(dāng)x為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

同步練習(xí)冊答案