1.已知各項為正數(shù)的等比數(shù)列{an}滿足2a1+a3=6,${a}_{3}^{2}$=a5
(1)求數(shù)列{an}的通項公式;
(2)設(shè)anbn=n,數(shù)列{bn}前n項和為Tn.若(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.

分析 (1)設(shè)等比數(shù)列{an}的公比為q,從而可得$\left\{\begin{array}{l}{2{a}_{1}+{a}_{1}{q}^{2}=6}\\{({a}_{1}{q}^{2})^{2}={a}_{1}{q}^{4}}\end{array}\right.$,從而解得;
(2)由anbn=n可得bn=$\frac{n}{{2}^{n-1}}$,從而利用錯位相減法求Tn,從而化恒成立問題為最值問題.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
則$\left\{\begin{array}{l}{2{a}_{1}+{a}_{1}{q}^{2}=6}\\{({a}_{1}{q}^{2})^{2}={a}_{1}{q}^{4}}\end{array}\right.$,
解得,a1=1,q=2,
故an=a1•qn-1=2n-1;
(2)∵anbn=n,∴bn=$\frac{n}{{2}^{n-1}}$,
∴Tn=1+$\frac{2}{2}$+$\frac{3}{4}$+…+$\frac{n}{{2}^{n-1}}$,2Tn=2+2+$\frac{3}{2}$+…+$\frac{n}{{2}^{n-2}}$,
∴Tn=2+1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-2}}$-$\frac{n}{{2}^{n-1}}$
=2+$\frac{1(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n-1}}$=4-$\frac{1}{{2}^{n-2}}$-$\frac{n}{{2}^{n-1}}$,
∵(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切正整數(shù)n恒成立,
∴(-1)nλ<4-$\frac{1}{{2}^{n-2}}$對一切正整數(shù)n恒成立,
∵4-$\frac{1}{{2}^{n-2}}$隨著n的增大而增大,
且4-$\frac{1}{{2}^{-1}}$=2,4-1=3,
故-λ<2且λ<3,
故-2<λ<3.

點(diǎn)評 本題考查了分類討論的思想應(yīng)用及等差數(shù)列與等比數(shù)列的性質(zhì)的判斷與應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+$\frac{π}{6}$)-2cos2B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列{$\frac{1}{(2n-1)(2n+1)}$}的前n項和為(  )
A.$\frac{n}{2n+1}$B.$\frac{2n}{2n+1}$C.$\frac{n}{4n+2}$D.$\frac{2n}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若(2x-1)2013=a0+a1x+…+a2013x2013(x∈R),則$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2013}}{{a}^{2013}{a}_{1}}$=$\frac{1}{4026}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z滿足z(1-i)=-1-i,則|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線與圓x2+y2=a2切于點(diǎn)P,|PF2|=3|PF1|,則該雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線2x2-y2=2,過點(diǎn)P(2,1)的直線l與曲線相交于A,B兩點(diǎn).
(1)若直線AB平行于y軸,求線段AB的長;
(2)若直線l繞P點(diǎn)轉(zhuǎn)動,當(dāng)點(diǎn)P為線段AB的中點(diǎn)時,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若向量$\overrightarrow{OA}$=(1,-1),|$\overrightarrow{OA}$=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$-$\overrightarrow{OA}$夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若在區(qū)間[-3,5]上隨機(jī)取一個實(shí)數(shù)x,則|x|≤4的概率為$\frac{7}{8}$.

查看答案和解析>>

同步練習(xí)冊答案