曲線C的方程為
x2
m2
+
y2
n2
=1,其中m,n是將一枚骰子先后投擲兩次所得點數(shù),事件A=“方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓”,那么P(A)=( 。
A、
5
12
B、
7
12
C、
1
2
D、
1
6
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:易得總的基本事件共36個,表示橢圓的共15個,由概率公式可得.
解答: 解:m,n是將一枚骰子先后投擲兩次所得點數(shù)共6×6=36,
∵事件A=“方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓”
∴m>n,列舉可得事件A包含(2,1),(3,1),(3,2),
(4,1),(4,2),(4,3),(5,1),(5,2),
(5,3),(5,4),(6,1),(6,2),(6,3),
(6,4),(6,5)共15個
∴P(A)=
15
36
=
5
12

故選:A
點評:本題考查古典概型及其概率公式,涉及橢圓的方程,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲,乙,丙三人到三個景點旅游,每個人只去一個景點,設事件A為“三個人去的景點不相同”,事件B為“甲獨自去一個景點”,則概率P(A|B)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2-2ax-b2+16=0(a,b∈R),若a∈[0,6],b∈[0,4],則方程沒有實根的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l⊥平面α,P∈α,那么過點P且垂直于l的直線( 。
A、只有一條,在平面α內(nèi)
B、只有一條,且不在平面α內(nèi)
C、有無數(shù)條,且都在平面α內(nèi)
D、有無數(shù)條,不一定都在平面α內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+1(a,b為常數(shù),且a>0),f(-1)=0,且對任意實數(shù)x均有f(x)≥0.
(1)求函數(shù)f(x)的表達式;
(2)若g(x)=f(x)-kx(x∈[-2,2])是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓P過頂點A(-3,0),且在定圓B:(x-3)2+y2=64的內(nèi)部與其相內(nèi)切,求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
xex+
1
3
,x<0
2x-1,x≥0
的零點的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
a
=(4,-3),
b
=(2,1)若
a
+t
b
b
的夾角是
π
4
,求實數(shù)t的值( 。
A、-3B、1
C、-3或1D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
3
sin(x-
π
3
),x∈[0,
π
2
],那么這個函數(shù)的值域為
 

查看答案和解析>>

同步練習冊答案