16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若2sinA=3sinB=4sinC,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

分析 已知等式利用正弦定理化簡,得到三邊之比,利用余弦定理表示出cosA,將三邊長代入求出cosA的值得解A為鈍角,從而得解.

解答 解:∵△ABC中,2sinA=3sinB=4sinC,
∴由正弦定理化簡得:2a=3b=4c,
即b=$\frac{2}{3}$a,c=$\frac{1}{2}$a,
則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{4{a}^{2}}{9}+\frac{{a}^{2}}{4}-{a}^{2}}{2×\frac{2a}{3}×\frac{1}{2}a}$=-$\frac{11}{24}$<0,
∴A為鈍角,△ABC的形狀是鈍角三角形.
故選:C.

點評 此題考查了正弦、余弦定理,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.和諧高級中學(xué)共有學(xué)生570名,各班級人數(shù)如表:
一班二班三班四班
高一5251y48
高二48x4947
高三44474643
已知在全校學(xué)生中隨機抽取1名,抽到高二年級學(xué)生的概率是$\frac{1}{3}$.
(1)求x,y的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取114名學(xué)生,應(yīng)分別在各年級抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)平面內(nèi)表示復(fù)數(shù)z=(3m2+m-2)+(4m2-15m+9)i的點位于第一象限,則實數(shù)m=(  )
A.(-∞,-1)∪($\frac{2}{3}$,+∞)B.(-∞,$\frac{13}{4}$)∪(3,+∞)
C.(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{4}$)∪(3,+∞)D.(-∞,$\frac{2}{3}$)∪($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,sinA:sinB:sinC=$\sqrt{3}$:4:$\sqrt{31}$,則角C的大小為( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,已知2sinA-cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大小;
(2)若a=2,b2+c2-a2=$\frac{8}{5}$bc,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足:a1=2,an+1=an2-nan+1.
(1)求a2,a3,a4;
(2)猜想an的一個通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x-(x+1)ln(x+1).
(1)求f(x)的極值;
(2)當(dāng)a>b>0時,試證明:(1+a)b<(1+b)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax,a∈R$,若f(x)在區(qū)間$(-∞,-\frac{3}{2})$上存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.公比不為1的等比數(shù)列{an}滿足a5a6+a4a7=8,若a2•am=4,則m的值為( 。
A.8B.9C.10D.11

查看答案和解析>>

同步練習(xí)冊答案