【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對任意,且有恒成立?
若存在,求出的取值范圍;若不存在,說明理由。
【答案】(Ⅰ); (Ⅱ)見解析;(Ⅲ).
【解析】
(Ⅰ)當(dāng)時(shí),求得函數(shù)的導(dǎo)數(shù),得到,進(jìn)而可求解切線的方程;
(Ⅱ)就得函數(shù)的導(dǎo)數(shù),分類討論,即可求解函數(shù)的單調(diào)性,得到單調(diào)區(qū)間;
(Ⅲ)由題意,不妨設(shè),由題意,可得,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可求解.
(Ⅰ)
,
所以所求的切線方程為
(Ⅱ)函數(shù)的定義域?yàn)?/span>,
①當(dāng)時(shí),在上單調(diào)遞增.
②當(dāng)時(shí),在時(shí),單調(diào)遞增;
在時(shí),單調(diào)遞減;
在時(shí),單調(diào)遞增;
③當(dāng)時(shí),在時(shí),單調(diào)遞增;
在時(shí),單調(diào)遞減;
在時(shí),單調(diào)遞增.
(Ⅲ)假設(shè)存在這樣的實(shí)數(shù),滿足條件,不妨設(shè),
由知,,
令,則函數(shù)在上單調(diào)遞減.
所以
所以,故存在這樣的實(shí)數(shù),滿足題意,其取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
函數(shù)是定義在上的奇函數(shù),且。
(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線與正方形: 的邊界相切.
(1)求的值;
(2)設(shè)直線交曲線于,交于,是否存在這樣的曲線,使得, , 成等差數(shù)列?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;
(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解甲、乙兩個(gè)工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了個(gè)輪胎,將每個(gè)輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:
(1)分別計(jì)算甲、乙兩廠提供的個(gè)輪胎寬度的平均值;
(2)輪胎的寬度在內(nèi),則稱這個(gè)輪胎是標(biāo)準(zhǔn)輪胎.
(i)若從甲乙提供的個(gè)輪胎中隨機(jī)選取個(gè),求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率;
(ii)試比較甲、乙兩廠分別提供的個(gè)輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動(dòng)情況,判斷這兩個(gè)工廠哪個(gè)廠的輪胎相對更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元.設(shè)該公司的儀器月產(chǎn)量為臺,當(dāng)月產(chǎn)量不超過400臺時(shí),總收益為元,當(dāng)月產(chǎn)量超過400臺時(shí),總收益為元.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線有三個(gè)公共點(diǎn),求以這三個(gè)公共點(diǎn)為頂點(diǎn)的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長度為( )
A. B. π C. 2 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com