分析 (1)利用Sn+1-Sn可知an+1=2(n+1)+1,通過a1=S1=3滿足上式,進(jìn)而即得結(jié)論;
(2)通過Sn=n2+2n,裂項可知bn=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),并項相加即得結(jié)論.
解答 解:(1)∵Sn=n2+2n,
∴Sn+1=(n+1)2+2(n+1),
∴an+1=Sn+1-Sn
=[(n+1)2+2(n+1)]-(n2+2n)
=2(n+1)+1,
又∵a1=S1=1+2=3滿足上式,
∴an=2n+1;
(2)∵Sn=n2+2n,
∴bn=$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3{n}^{2}+5n}{4(n+1)(n+2)}$.
點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S7 | B. | S7或S8 | C. | S14 | D. | S8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,2} | B. | {1,2} | C. | {0,1,2} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com