【題目】已知點,是圓上的一個動點,為圓心,線段的垂直平分線與直線的交點為

1)求點的軌跡的方程;

2)設(shè)軸的正半軸交于點,直線交于兩點(不經(jīng)過點),且,證明:直線經(jīng)過定點,并寫出該定點的坐標(biāo).

【答案】(1);(2)直線經(jīng)過定點.

【解析】

(1)由橢圓定義,得到點的軌跡是以、為焦點的橢圓,求得的值,進而得到的值,即可得到橢圓的標(biāo)準(zhǔn)方程;

(2)聯(lián)立方程組,利用二次方程根與系數(shù)的關(guān)系,求得,,得到,,再由,根據(jù),即可求解實數(shù)m的值,進而得出結(jié)論.

(1)圓的圓心,半徑,

由垂直平分線性質(zhì)知:,

由橢圓定義知,點的軌跡是以為焦點的橢圓,

設(shè),焦距為

,,,

所以的方程為.

(2)由已知得,由,

當(dāng)時,設(shè),則,,

,

,即,

所以,解得,

①當(dāng)時,直線經(jīng)過點,不符合題意,舍去.

②當(dāng)時,顯然有,直線經(jīng)過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進同學(xué)們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。

A. 回答該問卷的總?cè)藬?shù)不可能是100

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團委會宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ()的一個焦點為橢圓內(nèi)一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點,有下列結(jié)論:

平面;②平面平面;③;

④直線與直線所成角的大小為.

其中正確結(jié)論的序號是__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)設(shè),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0時,f′(x)·g(x)f(x)·g′(x)0,且f(3)·g(3)0,則不等式f(x)·g(x)0的解集是( )

A. (3,0)∪(3,+∞)

B. (3,0)∪ (0,3)

C. (,-3)∪(3,+∞)

D. (,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,于點,將沿折起,使,連接,得到如圖所示的幾何體.

1)求證:平面平面;

2)若點在線段上,直線與平面所成角的正切值為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C所對的邊分別為a,b,c且ccosA=4,asinC=5.

(1)求邊長c;

(2)著△ABC的面積S=20.求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案