6.設(shè)集合A={x|x+2<0},B={x|(x+3)(x-1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.

分析 (1)化集合A,B,即可確定出兩集合的交集;
(2)確定出兩集合的并集,由不等式ax2+2x+b>0的解集為兩集合的并集,得到方程ax2+2x+b=0的兩根分別為-2和1,利用根與系數(shù)的關(guān)系即可求出a與b的值.

解答 解:(1)集合A={x|x+2<0}=(-∞,-2),B={x|(x+3)(x-1)>0}=(-∞,-3)∪(1,+∞),
∴A∩B=(-∞,-3),
(2)由(1)可求A∪B=(-∞,-2)∪(1,+∞),
∴-2,1為方程ax2+2x+b=0的兩個根,且a>0,
∴-2+1=-$\frac{2}{a}$,-2×1=$\frac{a}$,
解得a=2,b=-4.

點評 此題考查了交、并、補集的混合運算,熟練掌握交、并、補集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了判斷高中學(xué)生對文理科的偏好是否與性別有關(guān),隨機調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
  偏好理 偏好文 總計
 男 20 25 
 女  13 
 總計   50
(Ⅰ)把列聯(lián)表中缺失的數(shù)據(jù)填寫完整;
(Ⅱ)根據(jù)表中數(shù)據(jù)判斷,是否有97.5%的把握認為“高中學(xué)生對文理科的偏好于與性別有關(guān)”,并說明理由.
附:K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$.其中n=a+b+c+d.
 P(K2≥k0 0.150 0.100 0.050 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx,其中a>0.
(1)若f(x)在x=x0處取得最小值2,求a和x0的值;
(2)設(shè)x1,x2是任意正數(shù),證明:f(x1)+f(x2)≥2f($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M、m分別是函數(shù)f(x)=ax5-bx+sinx+1的最大值、最小值,則M+m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若關(guān)于x的不等式x+$\frac{4}{x}$≥a對于一切x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,5]B.(-∞,4]C.(-∞,2]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓的極坐標(biāo)方程為ρ=2cosθ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t為參數(shù)),則圓心到直線l的距離是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O為AD邊的中點,點M在線段PC上.
(1)證明:平面POB⊥平面PAD;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,PA∥平面MOB,求四棱錐M-BODC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知多面體ABCDEFG是由一個平面截長方體ABCD-A1B1C1D1所得的幾何體,如圖所示,其中AB=2BC=2AF=4CG=4.
(1)求BE的長;
(2)求二面角A-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果關(guān)于x的方程2x+1-a=0有實數(shù)根,則a的取值范圍是(  )
A.[2,+∞)B.(-1,2]C.(-2,1]D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案