評(píng)分等級(jí) | [0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
男(人數(shù)) | 2 | 5 | 9 | 5 | 4 |
女(人數(shù)) | 1 | 2 | 5 | 10 | 7 |
滿意 | 不滿意 | 總計(jì) | |
男 | 16 | 9 | 25 |
女 | 8 | 17 | 25 |
總計(jì) | 24 | 26 | 50 |
P=(K2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)利用古典概型概率公式,可求恰有1人是女性的概率;
(2)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表;求出k,與臨界值比較,即可得出能在犯錯(cuò)誤的概率不超過0.025的前提下可以認(rèn)為滿意該商品與性別有關(guān)
解答 解:(1)從評(píng)分等級(jí)為(3,4]的15人中隨機(jī)選取2人共有C152=105種結(jié)果,恰有一人為女性的有C51C101=50種結(jié)果,故所求概率P=$\frac{50}{105}$=$\frac{10}{21}$.…(5分)
(2)列聯(lián)表補(bǔ)充如下:
不滿意 | 滿意 | 合計(jì) | |
男 | 16 | 9 | 25 |
女 | 8 | 17 | 25 |
合計(jì) | 24 | 26 | 50 |
點(diǎn)評(píng) 本題考查了古典概型,列聯(lián)表,獨(dú)立性檢驗(yàn)的方法等知識(shí),考查了學(xué)生處理數(shù)據(jù)和運(yùn)算求解的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com