分析 an+1=(-1)n(an+1),分類討論:n=2k(k∈N*)時,a2k+1-a2k=1;n=2k-1時,a2k=-a2k-1-1.可得:a2k+1+a2k-1=0,a2k+2+a2k=-2.利用分組求和即可得出.
解答 解:∵an+1=(-1)n(an+1),
∴n=2k(k∈N*)時,a2k+1-a2k=1;
n=2k-1時,a2k=-a2k-1-1.
∴a2k+1+a2k-1=0,a2k+2+a2k=-2.
∴S2016=[(a1+a3)+…+(a2013+a2015)]+[(a2+a4)+…+(a2014+a2016)]
=0+(-2)×$\frac{2016}{4}$=-1008.
故答案為:-1008.
點評 本題考查了遞推關系、分組求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{1-{k}^{2}}}{k}$ | B. | $\frac{\sqrt{1-{k}^{2}}}{k}$ | C. | ±$\frac{\sqrt{1-{k}^{2}}}{k}$ | D. | k$\sqrt{1-{k}^{2}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 24$\sqrt{2}$ | B. | 12$\sqrt{2}$ | C. | 48$\sqrt{2}$ | D. | 20$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com