分析 (Ⅰ)函數(shù)f(x)圖象上點M處切線斜率為${f^'}(x)=\frac{lnx-1}{{{{ln}^2}x}}=-\frac{1}{{{{ln}^2}x}}+\frac{1}{lnx}$,利用x∈(1,e2],即可求函數(shù)f(x)圖象上點M處切線斜率的最大值;
(Ⅱ) h(x)在點(e,h(e))處的切線l與直線x-y-2=0垂直,h′(e)=a=-1,h(e)=1,即可求切線l方程.
解答 解:(Ⅰ)設切點M(x,f(x)),則x∈(1,e2].
函數(shù)f(x)圖象上點M處切線斜率為${f^'}(x)=\frac{lnx-1}{{{{ln}^2}x}}=-\frac{1}{{{{ln}^2}x}}+\frac{1}{lnx}$…(2分)
∵$x∈({1,\left.{e^2}]}\right.,\frac{1}{lnx}∈[{\frac{1}{2}}\right.,\left.{+∞})$,…(4分)
∴${f^'}(x)=-{({\frac{1}{lnx}-\frac{1}{2}})^2}+\frac{1}{4}$,
∴$當\frac{1}{lnx}=\frac{1}{2}時,即x={e^2},{f^'}{(x)_{max}}=\frac{1}{4}$…(6分)
(Ⅱ)∵$h(x)=\frac{x}{lnx}+ax+1$,${h^,}(x)=\frac{lnx-1}{{{{ln}^2}x}}+a$,…(8分)
又h(x)在點(e,h(e))處的切線l與直線x-y-2=0垂直.
∴h′(e)=a=-1,h(e)=1,…(10分)
切線l的方程為x+y-1-e=0…(12分)
點評 本題考查導數(shù)知識的運用,考查導數(shù)的幾何意義,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 60° | B. | 90° | C. | 105° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com