已知函數(shù)f(x)=
x2-2ax+1,x≤
1
2
loga(x+
1
2
)+
1
2
x>
1
2
是定義域上的單調(diào)減函數(shù),則a的取值范圍是( 。
A、(1,+∞)
B、[2,+∞)
C、(1,2)
D、[
1
2
,
3
4
]
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的單調(diào)性和每個(gè)函數(shù)的單調(diào)性之間的關(guān)系建立不等式關(guān)系即可.
解答: 解:若函數(shù)f(x)定義域上的單調(diào)減函數(shù),
則滿足
0<a<1
-
-2a
2
=a≥
1
2
1
4
-2a•
1
2
+1≥loga(
1
2
+
1
2
)+
1
2
,
0<a<1
a≥
1
2
a≤
3
4
,即
1
2
≤a≤
3
4

故選:D
點(diǎn)評(píng):本題主要考查分段函數(shù)的單調(diào)性的應(yīng)用,分段函數(shù)為單調(diào)函數(shù),則要保證每個(gè)函數(shù)單調(diào),且在端點(diǎn)處也滿足對(duì)應(yīng)的大小關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:
組別理科文科
性別男生女生男生女生
人數(shù)4431
學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動(dòng)進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(Ⅰ)求理科組恰好記4分的概率?
(Ⅱ)設(shè)文科男生被選出的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地汽車最大保有量為60萬(wàn)輛,為了確保城市交通便捷暢通,汽車實(shí)際保有量x(單位:萬(wàn)輛)應(yīng)小于60萬(wàn)輛,以便留出適當(dāng)?shù)目罩昧,已知汽車的年增長(zhǎng)量y(單位:萬(wàn)輛)和實(shí)際保有量與空置率的乘積成正比,比例系數(shù)為k(k>0).
(空置量=最大保有量-實(shí)際保有量,空量率=
空置量
最大保有量

(Ⅰ)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)求汽車年增長(zhǎng)量y的最大值;
(Ⅲ)當(dāng)汽車年增長(zhǎng)量達(dá)到最大值時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線Γ由曲線C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲線C2
x2
a2
-
y2
b2
=1(y>0)
組成,其中點(diǎn)F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點(diǎn),點(diǎn)F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點(diǎn);
(1)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(2)對(duì)于(1)中的曲線Γ,若過(guò)點(diǎn)F4作直線l平行于曲線C2的漸近線,交曲線C1于點(diǎn)A、B,求三角形ABF1的面積;
(3)如圖,若直線l(不一定過(guò)F4)平行于曲線C2的漸近線,交曲線C1于點(diǎn)A、B,求證:弦AB的中點(diǎn)M必在曲線C2的另一條漸近線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M與兩個(gè)定點(diǎn)(1,0),(-2,0)的距離的比為
1
2
,則點(diǎn)M的軌跡所包含的圖形面積等于( 。
A、9πB、8πC、4πD、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間幾何體的三視圖如圖所示,則該幾何體的表面積和體積分別為( 。
A、6+2
5
,2
B、8+2
3
,1
C、8+2
5
,2
D、6+2
3
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為二次函數(shù),且f(1)=1,f(x+1)-f(x)=-4x+1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x)-x-a,若函數(shù)g(x)在實(shí)數(shù)R上沒(méi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|x|≤
π
4
,則函數(shù)f(x)=cos2x+sinx的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=
1
2
,an+1=
an-1
an
,則該數(shù)列的前22項(xiàng)和等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案