16.某產(chǎn)品的廣告費用支出x與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):
x/百萬元24568
y/百萬元3040605070
(1)求y與x之間的回歸直線方程;(參考數(shù)據(jù):22+42+52+62+82=145,2×30+4×40+5×60+6×50+8×70=1380)
(2)試預測廣告費用支出為1千萬元時,銷售額是多少?
附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值,線性回歸方程也可寫為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

分析 (1)根據(jù)回歸系數(shù)公式計算回歸系數(shù),代入回歸方程即可;
(2)把x=10代入回歸方程計算.

解答 解:(1)$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5,$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50.
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=2×30+4×40+5×60+6×50+8×70=1380,
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=22+42+52+62+82=145.
∴$\stackrel{∧}$=$\frac{1380-5×5×50}{145-5×{5}^{2}}$=6.5,$\stackrel{∧}{a}$=50-6.5×5=17.5,
所以回歸直線方程為$\stackrel{∧}{y}$=6.5x+17.5.
(2)當x=10時,$\stackrel{∧}{y}$=6.5×10+17.5=82.5.
答:當廣告費用支出為1千萬元時,銷售額約是82.5百萬元.

點評 本題考查了線性回歸方程的求解和數(shù)值估計,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,CD⊥BD,PB⊥平面ABCD,PB=AB=AD=3,點E在線段PA上,且滿足$\frac{PE}{EA}$=λ.
(1)若PC∥平面BDE,求實數(shù)λ的值,
(2)在(1)的條件下,求三棱錐B-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.過點P(2,3)作圓(x+4)2+(y+1)2=9的切線PA,PB,切點分別是A,B,則直線AB的方程為( 。
A.6x+4y+19=0B.4x-6y+19=0C.6x-4y+19=0D.4x+6y-19=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=lnx+x2-10的零點所在的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在一次“知識競賽”活動中,有A1,A2,B,C四道題,其中A1,A2為難度相同的容易題,B為中檔題,C為較難題.現(xiàn)甲、乙兩位同學均需從四道題目中隨機抽取一題作答.
(Ⅰ)求甲所選題目的難度大于乙所選題目的難度的概率
(Ⅱ)求甲、乙兩位同學所選的題目難度相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}中,a1=1,前n項和為Sn,對于任意n≥2,3Sn-4,an,2-$\frac{3}{2}$Sn-1總成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an
(Ⅱ)求數(shù)列{Sn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.寫出計算lg2×lg3×lg4×…×lg100的程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≤0}\\{(x-2)^{2}+{y}^{2}≤4}\end{array}\right.$,則z=-$\frac{\sqrt{3}}{3}$x+y的最小值為(  )
A.-2$\sqrt{3}$B.-$\sqrt{3}$C.0D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求點P(0,4)到圓x2+y2-4x-5=0所引的切線長.

查看答案和解析>>

同步練習冊答案