4.已知i為虛數(shù)單位,若復(fù)數(shù)i•z=$\sqrt{2}$-i,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 設(shè)z=a+bi,代入i•z=$\sqrt{2}$-i,求出a,b的值,從而求出|z|的模即可.

解答 解:設(shè)z=a+bi,
若復(fù)數(shù)i•z=$\sqrt{2}$-i,
即i(a+bi)=-b+ai=$\sqrt{2}$-i,
解得:a=-1,b=$\sqrt{2}$,
則|z|=$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì),考查復(fù)數(shù)求模問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2,a3的值;
(2)求an的通項(xiàng)公式及S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,且對(duì)任意a∈D,都有唯一的實(shí)數(shù)b滿足f(b)=2f(a)-b,則該函數(shù)可能是( 。
A.f(x)=$\frac{1}{x}$B.f(x)=|x|C.f(x)=2xD.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R),若|f4(x)|在[-1,1]上的最大值為$\frac{1}{2}$,則a+b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A為△ABC的最小內(nèi)角,若向量$\overrightarrow{a}$=(cos2A,sin2A),$\overrightarrow$=($\frac{1}{co{s}^{2}A+1}$,$\frac{1}{si{n}^{2}A-2}$),則$\overrightarrow{a}$$•\overrightarrow$的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-1,$\frac{1}{2}$)C.[-$\frac{2}{5}$,$\frac{1}{2}$)D.[-$\frac{2}{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.做“西紅柿蛋湯”有以下幾道工序:A.破蛋(1分鐘);B.洗西紅柿并切好(2分鐘);C.水中放入西紅柿加熱至沸騰(3分鐘);D.沸騰后倒入雞蛋加熱(1分鐘);E.?dāng)嚨埃?分鐘).則完成“西紅柿蛋湯”需要的最短時(shí)間是6分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值為a+1,則a的取值范圍為(  )
A.(-1,1)B.[-1,1]C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知變量X服從正態(tài)分布N(2,4),下列概率與P(X≤0)相等的是( 。
A.P(X≥2)B.P(X≥4)C.P(0≤X≤4)D.1-P(X≥4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,$BC=2\sqrt{2}$,AC=2,且$cos({A+B})=-\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求AB的長(zhǎng)度; 
(Ⅱ)若f(x)=sin(2x+C),求y=f(x)與直線$y=\frac{{\sqrt{3}}}{2}$相鄰交點(diǎn)間的最小距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案