2.某幾何體的三視圖如圖,該幾何體的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

分析 通過觀察幾何體的三視圖,可得該幾何體是一個四棱錐,計算即得結(jié)論.

解答 解:根據(jù)幾何體的三視圖,得該幾何體是一個四棱錐,
其底面為邊長為1的正方形,高為2,
∴該四棱錐的體積為V四棱錐=$\frac{1}{3}$×1×1×2=$\frac{2}{3}$,
故選:B.

點評 本題主要考查幾何體的體積,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在其定義域內(nèi)既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的函數(shù)是( 。
A.f(x)=x2B.f(x)=-log2|x|C.f(x)=3|x|D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線y=ax2+bx+c(a≠0)的對稱軸在y軸的左側(cè),其中a、b、c∈{-3,-2,-1,0,1,2,3},在這些拋物線中,記隨機變量X=|a-b|,則X的均值EX為( 。
A.$\frac{8}{9}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{3}$x3-3x2+5x+9的極大值點為x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點(1,$\frac{1}{2}$)作圓x2+y2=1的切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓C的右焦點和上頂點
(Ⅰ)求橢圓C的方程和離心率;
(Ⅱ)點P為橢圓C上任意一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在四棱錐O-ABCD中,底面ABCD是邊長為2的正方形,OA⊥底面ABCD,OA=2,M為OA的中點.則異面直線OB與MD所成角余弦值為$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在直角坐標(biāo)系中,定義兩點P(x1,y1)與Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+
|y1-y2|,現(xiàn)給出四個命題:
(1)已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
(2)已知P,Q,R三點不共線,則必有d(P,Q)+d(Q,R)>d(P,R);
(3)用|PQ|表示P,Q兩點間的距離,那么|PQ|≥$\frac{{\sqrt{2}}}{2}$d(P,Q);
(4)若P,Q是橢圓$\frac{x^2}{9}+\frac{y^2}{4}$=1上的任意兩點,則d(P,Q)的最大值是2$\sqrt{13}$.
在以上命題中,你認為正確的命題有①③④.(只填寫所有正確的命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=alnx+$\frac{1}{x}$(a≠0)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在兩條直線y=ax+b1,y=ax+b2(b1≠b2)都是曲線y=f(x)的切線.求實數(shù)a的取值范圍;
(Ⅲ)若|x|f(x)≤0}⊆(0,1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)是R上的減函數(shù),且y=f(x-2)的圖象關(guān)于點(2,0)成中心對稱.若不等式f(a+sinθ)+f(2+cos2θ)≥0 對任意θ∈R恒成立,則a的取值范圍是(-∞,-$\frac{25}{8}$].

查看答案和解析>>

同步練習(xí)冊答案