分析 取AB中點N,連接MN,由三角形中位線定理得MN∥OB,則∠DMN為異面直線OB與MD所成角,然后通過求解直角三角形得到△DMN的三邊長,再由余弦定理得答案.
解答 解:如圖,
取AB中點N,連接MN,
又M為OA的中點,∴MN∥OB,則∠DMN為異面直線OB與MD所成角,
∵底面ABCD是邊長為2的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,
可得DM=$\sqrt{5}$,MN=$\sqrt{2}$,DN=$\sqrt{5}$.
在△DMN中,cos∠DMN=$\frac{(\sqrt{5})^{2}+(\sqrt{2})^{2}-(\sqrt{5})^{2}}{2×\sqrt{5}×\sqrt{2}}=\frac{\sqrt{10}}{10}$.
故答案為:$\frac{{\sqrt{10}}}{10}$.
點評 本題考查異面直線及其所成的角,考查空間點、線、面的位置關系及學生的空間想象能力、求異面直線角的能力.在立體幾何中找平行線是解決問題的一個重要技巧,這個技巧就是通過三角形的中位線找平行線,如果試題的已知中涉及到多個中點,則找中點是出現(xiàn)平行線的關鍵技巧,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,3) | C. | (1,4) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12+2$\sqrt{3}$+3π | B. | 12+3π | C. | $\sqrt{3}$π+2$\sqrt{3}$ | D. | $\frac{\sqrt{3}π}{3}$+2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com