10.函數(shù)f(x)=$\frac{1}{3}$x3-3x2+5x+9的極大值點為x=1.

分析 求出f(x)的導函數(shù),得出單調區(qū)間,即能求出極大值點.

解答 解:f′(x)=x2-6x+5;
f′(x)=0得,x=1,或5;
∴x∈(-∞,1)時,f′(x)>0,
x∈(1,5)時,f′(x)<0,
x∈(5,+∞)時,f′(x)>0;
∴x=1是f(x)的極大值點.
故答案為:x=1.

點評 本題考查了,利用導數(shù)求函數(shù)的極值,考查了不等式的解法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知單調遞減的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4是等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,角A、B、C的對邊為a、b、c,則“A=B”成立的必要不充分條件為( 。
A.cosA=cosBB.sinA=sinBC.bcosA=acosBD.acosA=bcosB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$)+2sin2x.求f(x)在[-π,0]上的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{{{a^2}-1}}{2}$x2-a2x+a,x∈R,a∈R.
(1)若函數(shù)f(x)在區(qū)間[0,2]內恰有兩個零點,求實數(shù)a的取值范圍;
(2)若a=-1,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記F(t)=M(t)-m(t),求函數(shù)F(t)在區(qū)間[-3,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設函數(shù)f(x)=$\frac{1}{x}$+ax+b,a,b∈R.
(1)若函數(shù)y=f(x)-2為奇函數(shù),且函數(shù)f(x)在(0,1]上單調遞減,在[1,+∞)上單調遞增,求函數(shù)f(x)的解析式;
(2)當a=1時,方程f(x)=$\frac{1}{2}$x在區(qū)間($\frac{1}{2}$,2]有兩個不同的實數(shù)根,求實數(shù)b的最小值;
(3)若對任意的實數(shù)b,都存在實數(shù)x0∈[$\frac{1}{2}$,2],使得不等式|f(x0)|≥$\frac{1}{2}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖,該幾何體的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知兩個函數(shù)f(x)=7x2-28x-c,g(x)=2x3+4x2-40x
(1)若對任意x∈[-3,3],都有f(x)≤g(x)成立,求實數(shù)c的取值范圍
(2)若對任意x1∈[-3,3],x2∈[-3,3],都有f(x1)≤g(x2)成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+1}$,若函數(shù)f(x)在(0,+∞)上為增函數(shù),則a的取值范圍是(-∞,2].

查看答案和解析>>

同步練習冊答案