分析 根據(jù)題意,得出$\frac{y}{{x}^{2}{+y}^{2}}$≤$\frac{1}{2x}$,求出a的值,再通過(guò)比較求出a的最大值以及對(duì)應(yīng)的x與y的值.
解答 解:∵x,y為正實(shí)數(shù),
∴$\frac{y}{{x}^{2}{+y}^{2}}$=$\frac{1}{\frac{{x}^{2}}{y}+y}$≤$\frac{1}{2\sqrt{\frac{{x}^{2}}{y}•y}}$=$\frac{1}{2x}$,當(dāng)且僅當(dāng)x=y時(shí)“=”成立;
當(dāng)x≥$\frac{1}{2x}$,即x≥$\frac{\sqrt{2}}{2}$時(shí),$\frac{1}{2x}$≤$\frac{\sqrt{2}}{2}$,
∴a=min|x,$\frac{y}{{x}^{2}+{y}^{2}}$|=$\frac{y}{{x}^{2}{+y}^{2}}$≤$\frac{\sqrt{2}}{2}$;
當(dāng)0<x<$\frac{\sqrt{2}}{2}$時(shí),a=min|x,$\frac{y}{{x}^{2}{+y}^{2}}$|<$\frac{\sqrt{2}}{2}$;
∴a的最大值為$\frac{\sqrt{2}}{2}$,此時(shí)x=y=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查不等式比較大小問(wèn)題,關(guān)鍵在于利用基本不等式求得$\frac{y}{{x}^{2}{+y}^{2}}$≤$\frac{1}{2x}$,再求a的最大值,也考查了分析轉(zhuǎn)化與運(yùn)算的能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com