17.已知圓C的圓心是直線x-y+1=0與y軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓的標(biāo)準(zhǔn)方程為(  )
A.x2+(y-1)2=8B.x2+(y+1)2=8C.(x-1)2+(y+1)2=8D.(x+1)2+(y-1)2=8

分析 對(duì)于直線x-y+1=0,令x=0,解得y.可得圓心C.設(shè)圓的半徑為r,利用點(diǎn)到直線的距離公式及其圓C與直線x+y+3=0相切的充要條件可得r.

解答 解:對(duì)于直線x-y+1=0,令x=0,解得y=1.
∴圓心C(0,1),
設(shè)圓的半徑為r,
∵圓C與直線x+y+3=0相切,
∴r=$\frac{|1+3|}{\sqrt{2}}$=2$\sqrt{2}$,
∴圓的標(biāo)準(zhǔn)方程為x2+(y-1)2=8.
故選:A.

點(diǎn)評(píng) 本題考查了點(diǎn)到直線的距離公式及其圓與直線相切的充要條件,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在如圖所示的程序框圖中,輸入A=22,B=4,則輸出的結(jié)果是( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)$\frac{i}{1+i}$-$\frac{1}{2i}$的實(shí)部與虛部的和為( 。
A.-$\frac{1}{2}$B.1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|2x>2},集合B為函數(shù)f(x)=lg(m-x)的定義域,且A∪B=R,那么m的值可以是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=ln(1-ex)(x<0),若f(a)-2a=f(b)-3b,則a,b的大小關(guān)系為a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若$a=1,b=\sqrt{3},A+C=2B$,則△ABC的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)$f(x)=Acos(wx+φ)(w>0,|φ|<\frac{π}{2})$的部分圖象如圖所示,其中N,P的坐標(biāo)分別為$(\frac{5}{8}π,-A),(\frac{11}{8}π,-0)$,則函數(shù)f(x)的單調(diào)遞減區(qū)間不可能為( 。
A.$[\frac{π}{8},\frac{5π}{8}]$B.$[-\frac{7π}{8},-\frac{3π}{8}]$C.$[\frac{9π}{4},\frac{21π}{8}]$D.$[\frac{9π}{8},\frac{33π}{8}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|-2|x+a|,a>0
(1)若a=1時(shí),求不等式f(x)>1的解集;
(2)若f(x)的圖象與x軸圍成的三角形面積小于6,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的通項(xiàng)公式${a_n}=3n-1(n∈{N^*})$.設(shè)數(shù)列{bn}為等比數(shù)列,且${b_n}={a_{k_n}}$.
(Ⅰ)若b1=a1=2,且等比數(shù)列{bn}的公比最小,
(。⿲(xiě)出數(shù)列{bn}的前4項(xiàng);
(ⅱ)求數(shù)列{kn}的通項(xiàng)公式;
(Ⅱ)證明:以b1=a2=5為首項(xiàng)的無(wú)窮等比數(shù)列{bn}有無(wú)數(shù)多個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案