分析 (1)先由f(x)的式子給出xn+1的表達式,然后由bn的式子給出bn+1的表達式,再用等比數(shù)列的定義即可證明;
(2)由等比數(shù)列的通項公式給出bn的表達式.
解答 解:∵f(x)=1+$\frac{2}{x}$,數(shù)列{xn}滿足x1=$\frac{11}{7}$,xn+1=f(xn),
∴xn+1=1+$\frac{2}{{x}_{n}}$=$\frac{{x}_{n}+2}{{x}_{n}}$,
∵bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$=$\frac{{x}_{n}+1}{3({x}_{n}-2)}$
∴bn+1=$\frac{1}{{x}_{n+1}-2}$+$\frac{1}{3}$=$\frac{1}{1+\frac{2}{{x}_{n}}-2}$+$\frac{1}{3}$=$\frac{1}{\frac{2}{{x}_{n}}-1}$+$\frac{1}{3}$=$\frac{2({x}_{n}+1)}{3(2-{x}_{n})}$,
∴$\frac{_{n+1}}{_{n}}$=-2,
∴{bn}是等比數(shù)列,
(2)∵x1=$\frac{11}{7}$,bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$,
∴b1=$\frac{1}{\frac{11}{7}-2}$+$\frac{1}{3}$=-2,
由(1)可知公比q=-2,
∴bn=(-2)n.
點評 本題考查了函數(shù)和數(shù)列的關(guān)系,抓住函數(shù)的表達式是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15° | B. | 50° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1:2 | B. | 2:5 | C. | 5:2 | D. | 2:1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
志愿 | 第一志愿 | 第二志愿 | 第三志愿 |
學校 | 1 | 2 | 3 |
專業(yè) | 第1專業(yè) | 第1專業(yè) | 第1專業(yè) |
第2專業(yè) | 第2專業(yè) | 第2專業(yè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com