12.己知集合M={x|-x2-x+6>0},N={x|lgx≥0},則M∩N=( 。
A.(-2,∞)B.[1,2)C.(-2,-1]D.(-2,3)

分析 分別求出M與N中不等式的解集確定出M與N,找出兩集合的交集即可.

解答 解:由M中不等式變形得:(x-2)(x+3)<0,
解得:-3<x<2,即M=(-3,2),
由N中不等式變形得:lgx≥0=lg1,即x≥1,
∴N=[1,+∞),
則M∩N=[1,2),
故選:B.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x>0,y>0,且2x+y=20,則lgx+lgy的最大值是( 。
A.50B.2C.1+lg5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1+4是a2,a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{n}{a_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知A(1,0),B(0,2),C(cosα,sinα),(0<α<π).
(Ⅰ)若$|\overrightarrow{OA}+\overrightarrow{OC}|=\sqrt{2+\sqrt{3}}$(O為坐標(biāo)原點(diǎn)),求$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角;
(Ⅱ)若$\overrightarrow{AC}⊥\overrightarrow{BC}$,求3sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式x2-5ax+b>0的解集為{x|x>4或x<1}.
(1)求實(shí)數(shù)a,b的值;
(2)若0<x<2,$f(x)=\frac{a}{x}+\frac{2-x}$,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)y=Asin(ωx+$\frac{π}{6}$)+m(A>0,ω>0)的最大值為3,最小值為-5,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,則A、ω、m的值分別為4,2,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(1,1,z),問z為何值時(shí)?<$\overrightarrow{a}$,$\overrightarrow$>最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)M是線段AB的中點(diǎn),O是平面上的任意一點(diǎn).試證:$\overrightarrow{OA}$-$\overrightarrow{OM}$=$\overrightarrow{OM}$$+\overrightarrow{BO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知不等式組$\left\{\begin{array}{l}{y-1≥0}\\{x+y-4≤0}\\{y-1≤k(x-1)}\end{array}\right.$(k>0)表示的平面區(qū)域?yàn)镈,若?(x,y)∈D,$\frac{y}{{x}^{2}}$≤1恒成立,則實(shí)數(shù)k的取值范圍是(0,1].

查看答案和解析>>

同步練習(xí)冊答案