【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線的交點(diǎn),且.
(1)證明:平面.
(2)若側(cè)面與底面垂直,求五面體的體積
【答案】(1)見解析;(2)45
【解析】
(1)取的中點(diǎn),連接,證明四邊形是平行四邊形,利用線面平行的判定定理即可證明;
(2)取的中點(diǎn),的中點(diǎn),連接,將該五面體分成三棱柱和四棱錐的體積和,即可得出該五面體的體積.
(1)證明:取的中點(diǎn),連接
如圖所示,因?yàn)?/span>,且
又側(cè)面是正方形,且
所以,且;
所以四邊形是平行四邊形,所以;
因?yàn)?/span>平面,平面,所以平面;
(2)取的中點(diǎn),的中點(diǎn),連接.則幾何體為三棱柱;
因?yàn)閭?cè)面與底面垂直,且,所以底面;
由題意知,
所以三棱柱的體積為;
因?yàn)?/span>為的中點(diǎn),
所以
又側(cè)面與底面垂直,所以平面,所以平面;
又,則四棱錐的體積為
即五面體的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列,若滿足(且),對(duì)于任意的,都有,則稱數(shù)列為“指數(shù)型數(shù)列”.
(1)已知數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是不是“指數(shù)型數(shù)列”;
(2)已知數(shù)列滿足,,證明數(shù)列為等比數(shù)列,并判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;
(3)若數(shù)列是“指數(shù)型數(shù)列”,且,證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣,為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲2000個(gè)點(diǎn),己知恰有800個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了豐富學(xué)生的課外文體活動(dòng),分別開設(shè)了閱讀、書法、繪畫等文化活動(dòng);跑步、游泳、健身操等體育活動(dòng).該中學(xué)共有高一學(xué)生300名,要求每位學(xué)生必須選擇參加其中一項(xiàng)活動(dòng),現(xiàn)對(duì)高一學(xué)生的性別、學(xué)習(xí)積極性及選擇參加的文體活動(dòng)情況進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:
(1)在選擇參加體育活動(dòng)的學(xué)生中按性別分層抽取6名,再從這6名學(xué)生中抽取2人了解家庭情況,求2人中至少有1名女生的概率;
(2)是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與選擇參加文化活動(dòng)有關(guān)?請(qǐng)說明你的理由.
附:參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù)(),則稱函數(shù)是“雙奇函數(shù)” .函數(shù).
(1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;
(2)假設(shè).
(i)在(1)的條件下,討論函數(shù)的單調(diào)性;
(ii)若,討論函數(shù)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和,過拋物線上一點(diǎn)作兩條直線與分別相切于兩點(diǎn),分別交拋物線于兩點(diǎn).
(1)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(2)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,焦距為,直線:與橢圓相交于、兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在橢圓上.斜率為的直線與線段相交于點(diǎn),與橢圓相交于、兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com