7.已知函數(shù)f(x)=e2π-x+sinx,x∈[π,2π],g(x)=${π}^{2x-e}+ln\frac{x}{e}$.x∈(0,e].
(1)若存在實數(shù)x0∈[π,2π]使得a≤f(x0)成立.對任意的實數(shù)x∈(0,e],b≥g(x)成立,求α的最大值u,b的最小值v;
(2)試比較u與v的大小,并說明理由.

分析 (1)利用導(dǎo)數(shù)判斷f(x),g(x)的單調(diào)性,求出f(x),g(x)的最大值,則u=fmax(x),v=gmax(x);
(2)構(gòu)造函數(shù)h(x)=$\frac{lnx}{x}$,判斷h(x)的單調(diào)性,得出h(e)>h(π),化簡即可得出u,v的大小關(guān)系.

解答 解:(1)f′(x)=-e2π-x+cosx,
∵π≤x≤2π,∴-e2π-x≤-1,cosx≤1,
∴f′(x)=-e2π-x+cosx≤0,
∴f(x)在[π,2π]上單調(diào)遞減,∴fmax(x)=f(π)=eπ
∵存在實數(shù)x0∈[π,2π]使得a≤f(x0)成立,
∴a≤eπ,∴u=eπ
∵g′(x)=2π2x-elnπ+$\frac{1}{x}$>0,
∴g(x)在(0,e]上單調(diào)遞增,∴gmax(x)=g(e)=πe
∴對任意的實數(shù)x∈(0,e],b≥g(x)成立,
∴b≥πe,∴v=πe
(2)令h(x)=$\frac{lnx}{x}$,則h′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴當(dāng)x≥e時,h′(x)≤0,
∴h(x)在[e,+∞)上是減函數(shù),
∴h(e)>h(π),即$\frac{lne}{e}<\frac{lnπ}{π}$,∴πl(wèi)ne<elnπ,
∴l(xiāng)neπ<lnπe,即eπ<πe
∴u<v.

點評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性,函數(shù)最值的關(guān)系,函數(shù)單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.棱長為a的正四面體中,給出下列命題:
①正四面體的體積為V=$\frac{a^3}{24}$;
②正四面體的表面積為S=$\sqrt{3}$a2;
③內(nèi)切球與外接球的表面積的比為1:9;
④正四面體內(nèi)的任意一點到四個面的距離之和均為定值.
上述命題中真命題的序號為②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)常數(shù)a∈R,若函數(shù)f(x)=(a-x)|x|存在反函數(shù)f-1(x).
(1)求證:a=0,并求出反函數(shù)f-1(x);
(2)若關(guān)于x的不等式f-1(x2+m)<f(x)對一切x∈[-2,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(文科)若集合A={1,2,3,4},a∈A,b∈A,那么方程$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}$=1表示中心在原點,焦點在y軸的橢圓的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)xOy中,動點P(x,y)到定直線l:x=-2的距離比到定點F(1,0)的距離大1,D(a,0)是x軸上一動點.
(1)求動點P的軌跡方程G;
(2)當(dāng)a=-1時,過D作直線,交動點P的軌跡于M(x1,y1)、N(x2,y2)兩點,證明:y1y2為定值;
(3)設(shè)A(4,y1)是軌跡方程G在x軸上方的點,過A作AB垂直于y軸,垂足為B,C為OB的中點,以C為圓心,CO為半徑作圓C1,討論直線AD與圓C1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$(a>b>0)的離心率$e=\frac{{\sqrt{6}}}{3}$,過點A(0,-b)和B(a,0)的直線與原點的距離為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.且$\overrightarrow{DE}•\overrightarrow{EC}=0$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax-1-axlnx(x>0,0<a≤1).
(1)求函數(shù)f(x)的最大值;
(2)設(shè)g(x)=$\frac{lnx}{ax-1}$,當(dāng)a∈(0,1]時,試討論函數(shù)g(x)的單調(diào)性;
(3)利用(2)的結(jié)論,證明:當(dāng)n>m>0時,(1+n)m<(1+m)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知首項為1的正項數(shù)列{an}滿足:an+12+an2<$\frac{5}{2}$an+1an,n∈N*
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,Sn為數(shù)列{an}的前n項和.若$\frac{1}{2}$Sn<Sn+1<2Sn,n∈N*,求q的取值范圍.
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且1+a2+…+ak=120,求正整數(shù)k的最小值.以及k取最小值對相應(yīng)數(shù)列a1,a2,…,ak的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以正四面體各面中心為頂點的新四面體的棱長是原四面體棱長的( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案