14.已知點A(1,-1),y軸上一點B使得直線AB的傾斜角為60°,求B點坐標(biāo).

分析 由題意設(shè)出B的坐標(biāo),由兩點求斜率公式求得AB的斜率,再由傾斜角的正切值等于斜率得答案.

解答 解:設(shè)B(0,m),
∵A(1,-1),
∴${k}_{AB}=\frac{m+1}{-1}=-m-1$,
又直線AB的傾斜角為60°,
∴-m-1=tan60°=$\sqrt{3}$,
解得m=-1-$\sqrt{3}$.
∴點B的坐標(biāo)為(0,$-1-\sqrt{3}$).

點評 本題考查直線的傾斜角,考查了直線的傾斜角與斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{a-i}{3+4i}$的實部是$\frac{2}{5}$,則實數(shù)a=(  )
A.2B.$\frac{14}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)直線x=t與兩數(shù)f(x)=x2+1,g(x)=x+lnx的圖象分別交于P,Q兩點,則|PQ|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,M,N為雙曲線C上兩點,且kMN=0,若$\overrightarrow{{F}_{1}Q}$=$\overrightarrow{QN}$(Q在雙曲線C上),且|MN|=$\frac{{|F}_{1}{F}_{2}|}{4}$,則雙曲線C的漸近線方程為( 。
A.y=$±\sqrt{2}$xB.y=$±\sqrt{3}$xC.y=±2xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知|$\overrightarrow{a}$+$\overrightarrow$|=6,|$\overrightarrow{a}$$-\overrightarrow$|=8,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.滿足{1,2,3}⊆M?{1,2,3,4,5}的集合M有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在x上的截距為-3,且和直線2x+y一1=0平行的直線方程為2x+y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過已知點A(1,3)的直線l與x軸、y軸分別交于P、Q兩點,求使|AP|•|AQ|最小的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)列{an}中,前n項和為Sn,且${S_n}=\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

同步練習(xí)冊答案