分析 (I)由${S_n}=\frac{n(n+1)}{2}$,可得n=1時,a1=S1=1;n≥2時,an=Sn-Sn-1.
(II)${b_n}=\frac{a_n}{2^n}$=$\frac{n}{{2}^{n}}$,利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
解答 解:(I)∵${S_n}=\frac{n(n+1)}{2}$,∴n=1時,a1=S1=1;n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.n=1時也成立.
∴an=n.
(II)${b_n}=\frac{a_n}{2^n}$=$\frac{n}{{2}^{n}}$,
∴數(shù)列{bn}的前項和Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=$1-\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$.
點評 本題考查了等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”、遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2015}{2}$ | B. | 1006 | C. | 1007 | D. | 1008 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com