11.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為θ,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$.
(1)當(dāng)θ=$\frac{π}{3}$時(shí),若△OPQ為直角三角形,其中∠P=$\frac{π}{2}$,求t的值;
(2)令f(t)=|$\overrightarrow{PQ}$|,若f(t)在t=t0(0<t0<$\frac{1}{5}$)時(shí)取得最小值,求θ的取值范圍.

分析 (1)運(yùn)用向量的數(shù)量積的定義可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=1,由向量垂直的條件:數(shù)量積為0,計(jì)算即可得到t;
(2)由向量的運(yùn)算可得|$\overrightarrow{PQ}$|2=(5+4cosθ)t2+(-2-4cosθ)t+1,由二次函數(shù)可得0<$\frac{1+2cosθ}{5+4cosθ}$<$\frac{1}{5}$,解不等式可得cosθ的范圍,可得夾角的范圍.

解答 解:(1)當(dāng)θ=$\frac{π}{3}$時(shí),$\overrightarrow{OA}$•$\overrightarrow{OB}$=2×1×cos$\frac{π}{3}$=1,
$\overrightarrow{OP}$•$\overrightarrow{PQ}$=t$\overrightarrow{OA}$[((1-t)$\overrightarrow{OB}$-t$\overrightarrow{OA}$]=t(1-t)$\overrightarrow{OA}$•$\overrightarrow{OB}$-t2$\overrightarrow{OA}$2=t-5t2,
由題意可得OP⊥PQ,可得$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,即t-5t2=0,
解得t=$\frac{1}{5}$(t=0舍去);
(2)由題意可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=2×1×cosθ=2cosθ,
$\overrightarrow{PQ}$=$\overrightarrow{OQ}$-$\overrightarrow{OP}$=(1-t)$\overrightarrow{OB}$-t$\overrightarrow{OA}$,
∴|$\overrightarrow{PQ}$|2=$\overrightarrow{PQ}$2=(1-t)2$\overrightarrow{OB}$2+t2$\overrightarrow{OA}$2-2t(1-t)$\overrightarrow{OA}$•$\overrightarrow{OB}$
=(1-t)2+4t2-4t(1-t)cosθ
=(5+4cosθ)t2+(-2-4cosθ)t+1
由二次函數(shù)知當(dāng)上式取最小值時(shí),t0=$\frac{1+2cosθ}{5+4cosθ}$,
由題意可得0<$\frac{1+2cosθ}{5+4cosθ}$<$\frac{1}{5}$,解得-$\frac{1}{2}$<cosθ<0,
∴$\frac{π}{2}$<θ<$\frac{2π}{3}$.
即θ的取值范圍為($\frac{π}{2}$,$\frac{2π}{3}$).

點(diǎn)評 本題考查數(shù)量積的定義和性質(zhì)與向量的夾角,涉及二次函數(shù)和三角函數(shù)的運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,則2x-y的最大值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若實(shí)數(shù)x滿足x>-4,則函數(shù)f(x)=x+$\frac{9}{x+4}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x3-ax2,則當(dāng)x>0時(shí),f(x)=-x3-ax2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-1,g(x)=1+ax(a∈R),
(1)若a=-1,解不等式|f(x)|≤g(x);
(2)討論關(guān)于x的方程|f(x)|=g(x)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\frac{π}{2}$<α<π,且tanα=-$\frac{4}{3}$,則sin(α+$\frac{π}{2}$)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若acosC+ccosA=bsinB,則△ABC的形狀一定是( 。
A.等邊三角形B.直角三角形
C.鈍角三角形D.不含60°角的等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解關(guān)于x的不等式:mx2-(4m+1)x+4>0(m∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若α為銳角,滿足cosα+2sinα=$\frac{\sqrt{10}}{2}$,則tanα=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案