A. | -$\frac{16}{65}$ | B. | $\frac{16}{65}$ | C. | $\frac{63}{65}$ | D. | -$\frac{63}{65}$ |
分析 由向量的數(shù)量積的坐標(biāo)表示和兩角和的正弦公式及誘導(dǎo)公式,可得sinC,由同角的平方關(guān)系和商數(shù)關(guān)系,可得sinA,cosA,運用正弦定理可得C為銳角,再由兩角和的余弦公式,計算即可得到所求值.
解答 解:$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),
則$\overrightarrow{m}$$•\overrightarrow{n}$=sinAcosB+cosAsinB=sin(A+B)=sinC=$\frac{5}{13}$,
tanA=$\frac{4}{3}$,即$\frac{sinA}{cosA}$=$\frac{4}{3}$,sin2A+cos2A=1,
解得sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$,
由sinA>sinC,可得a>c,即A>C,C為銳角,
可得cosC=$\frac{12}{13}$,
則cosB=-cos(A+C)=-(cosAcosC-sinAsinC)
=-($\frac{3}{5}$×$\frac{12}{13}$-$\frac{4}{5}$×$\frac{5}{13}$)=-$\frac{16}{65}$.
故選A.
點評 本題考查向量的數(shù)量積的坐標(biāo)表示,同時考查三角函數(shù)的誘導(dǎo)公式和兩角和的正弦、余弦公式,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰直角三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com