14.已知數(shù)列{an}滿(mǎn)足an+an+1=(-1)${\;}^{\frac{n(n+1)}{2}}$n,Sn是其前n項(xiàng)和,若S2015=-1007-b,且a1b>0,則$\frac{1}{{a}_{1}}$+$\frac{2}$的最小值為$3+2\sqrt{2}$.

分析 由已知遞推式得到a2+a3=-2,a4+a5=4,…,a2012+a2013=2012,a2014+a2015=-2014,累加可求S2015,結(jié)合S2015=-1007-b求得a1+b=1,代入$\frac{1}{a_1}+\frac{2}$展開(kāi)后利用基本不等式求最值.

解答 解:由已知得:a2+a3=-2,a4+a5=4,…,a2012+a2013=2012,a2014+a2015=-2014,
把以上各式相加得:S2015-a1=-2014+1006=-1008,
∴S2015=a1-1008=-1007-b,即a1+b=1,
∴$\frac{1}{a_1}+\frac{2}=\frac{{{a_1}+b}}{a_1}+\frac{{2({a_1}+b)}}$=$3+\frac{a_1}+\frac{{2{a_1}}}≥3+2\sqrt{2}$.
故答案為:$3+2\sqrt{2}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推式,考查了累加法求數(shù)列的和,訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{3}π$B.$\frac{16}{3}π$C.D.$\frac{64}{3π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.有四個(gè)關(guān)于三角函數(shù)的命題:
p1:sinx=siny⇒x+y=π或x=y;
p2:?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=1;
p3:x,y∈R,cos(x-y)=cosx-cosy;
p4:?x∈[0,$\frac{π}{2}$],$\sqrt{\frac{1+cos2x}{2}}$=cosx.
其中真命題是( 。
A.p1,p2B.p2,p3C.p1,p4D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.0B.-$\frac{1}{2}$C.-1D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某同學(xué)想求斐波那契數(shù)列0,1,1,2,…(從第三項(xiàng)起每一項(xiàng)等于前兩項(xiàng)的和)的前10項(xiàng)的和,他設(shè)計(jì)了一個(gè)程序框圖,那么在空白矩形框和判斷框內(nèi)應(yīng)分別填入的語(yǔ)句是(  )
A.c=a;i≤9B.b=c;i≤9C.c=a;i≤10D.b=c;i≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a=log42,b=log63,c=lg5,則(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=ex-ax2(e為自然對(duì)數(shù)的底),曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=(e-1)x+b.
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x≥0,求證:f(x)≥$\frac{1}{2}{x^2}$+2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)不等式組$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$ 表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在圓x2+y2=1內(nèi)的概率為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知{an}為等比數(shù)列,若a1+a2+a3=2,a7+a8+a9=8,求a1+a2+a3+…+a3m-2+a3m-1+a3m=$\frac{2}{3}$(4m-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案