已知圓,直線 ,與圓交與兩點(diǎn),點(diǎn).
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求的取值范圍.
(1);(2).
解析試題分析:(1)由點(diǎn)在圓C上且滿足得是直徑,即直線過圓心;(2)由求的取值范圍,就是要建立起點(diǎn)與直線的關(guān)系,它們是通過點(diǎn)聯(lián)系起來.我們可以設(shè)出兩點(diǎn)的坐標(biāo)分別為即為,一方面由可得到與的關(guān)系,另一方面直線與圓C相交于點(diǎn),把直線方程與圓方程聯(lián)立方程組,可以得到與的關(guān)系,從而建立起與的關(guān)系,可求出的范圍.
試題解析:(1)圓的方程可化為,故圓心為,半徑....2分
當(dāng)時(shí),點(diǎn)在圓上,又,故直線過圓心,∴ 4分
從而所求直線的方程為 6分
(2)設(shè)由得
即
∴ ① 8分
聯(lián)立得方程組,化簡(jiǎn),整理得
.(*)
由判別式得且有 10分
代入 ①式整理得,從而,又
∴可得的取值范圍是 14分
考點(diǎn):(1)圓周角與弦的關(guān)系;(2)直線與圓相交問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄A與直線相切且與圓:外切。
(1)求圓心的軌跡方程;
(2)過定點(diǎn)作直線交軌跡于兩點(diǎn),是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過A(1,1)、B(2,)兩點(diǎn),且圓心C在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓O與離心率為的橢圓T:()相切于點(diǎn)M。
⑴求橢圓T與圓O的方程;
⑵過點(diǎn)M引兩條互相垂直的兩直線、與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合)。
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為、,求的最大值;
②若,求與的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn) .
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)之比為3:1;③圓心到直線的距離為,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí)
求:的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí),求:的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位。且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(I)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com