A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\sqrt{5}-1$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 求出A,F(xiàn)的坐標(biāo),結(jié)合向量垂直的關(guān)系建立方程進(jìn)行求解即可.
解答 解:∵雙曲線的左頂點為A(-a,0),右焦點為F(c,0),點B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}$=0,
∴(-a,-b)•(c,-b)=0,
即-ac+b2=0,
即c2-a2-ac=0,
即e2-e-1=0,得e=$\frac{{\sqrt{5}+1}}{2}$,
故選:A.
點評 本題主要考查雙曲線離心率的計算,根據(jù)向量垂直的關(guān)系建立方程進(jìn)行求解是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1 | B. | y2-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{4}$-x2=1 | D. | $\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②④ | C. | ①③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com