分析 求出過點(diǎn)P(1,1)直線的參數(shù)方程,將曲線化為普通方程,帶入利用參數(shù)的幾何意義可得答案.
解答 解:直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=$\frac{π}{6}$,
直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=1+tsin\frac{π}{6}}\end{array}\right.$,(t為參數(shù))
即$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$
曲線$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ 消去參數(shù)θ,可得:x2+y2=4.
把直線參數(shù)方程帶入曲線:得t2+($\sqrt{3}+1$)t-2=0,
設(shè)兩點(diǎn)A,B,對(duì)應(yīng)參數(shù)分別為t1,t2,
∴t1t2=-2
∴點(diǎn)P到A,B兩點(diǎn)的距離之積為2,
故答案為:2.
點(diǎn)評(píng) 本小題主要考查圓的參數(shù)方程、參數(shù)方程的概念、一元二次方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16f(-3)>9f(4) | B. | 16f(3)<9f(-4) | C. | 9f(3)>16f(4) | D. | 9f(-3)<16f(-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 12 | C. | 18 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{3},+∞})$ | B. | (0,12] | C. | [0,12] | D. | $({-∞,\frac{1}{3}}]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com