分析 (1)先求導(dǎo),再找到函數(shù)的單調(diào)性,即可求出函數(shù)的函數(shù)f(x)的極值點(diǎn);
(2)構(gòu)造函數(shù),$h(x)={(x-1)^2}+\frac{a}{2}ln(2x-1)-alnx$,求證函數(shù)的最小值為0,即可.
解答 解:(1)f(x)=(x-1)2-ln(2x-1),定義域$(\frac{1}{2},+∞)$,
∴$f'(x)=2(x-1)-\frac{2}{2x-1}=\frac{2x(2x-3)}{2x-1}$,
令f′(x)=0,得$x=\frac{3}{2}$,
x | $(\frac{1}{2},\frac{3}{2})$ | $\frac{3}{2}$ | $(\frac{3}{2},+∞)$ |
f(x) | - | 0 | + |
f(x) | 遞減 | 極小值 | 遞增 |
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,考查函數(shù)恒成立問(wèn)題,考查分類討論思想,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com