3.如圖,一智能掃地機器人在A處發(fā)現(xiàn)位于它正西方向的B處和B處和北偏東30°方向上的C處分別有需要清掃的垃圾,紅外線感應(yīng)測量發(fā)現(xiàn)機器人到B的距離比到C的距離少0.4m,于是選擇沿A→B→C路線清掃,已知智能掃地機器人的直線行走速度為0.2m/s,忽略機器人吸入垃圾及在B處旋轉(zhuǎn)所用時間,10秒鐘完成了清掃任務(wù);
(1)求B、C兩處垃圾之間的距離;(精確到0.1)
(2)求智能掃地機器人此次清掃行走路線的夾角∠B的大;(用反三角函數(shù)表示)

分析 (1)設(shè)BC=x,則AB=2-x,AC=2.4-x,A=120°,利用余弦定理列方程解出x;
(2)利用(1)的結(jié)論得出三角形ABC的三邊長,使用余弦定理求出cosB,得到B的大。

解答 解;(1)設(shè)BC=x,則AB=2-x,AC=2-x+0.4=2.4-x,
由題意得A=120°,
在△ABC中,由余弦定理得:cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB×AC}$=$\frac{(2-x)^{2}+(2.4-x)^{2}-{x}^{2}}{2×(2-x)×(2.4-x)}$=-$\frac{1}{2}$.
解得x=1.4.
∴BC=1.4m.
(2)由(1)知AB=0.6,AC=1,BC=1.4.
∴cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{11}{14}$.
∴B=arccos$\frac{11}{14}$.

點評 本題考查了余弦定理,解三角形的實際應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題:
①“若a≤b,則a<b”的否命題;
②“若a=1,則ax2-x+3≥0的解集為R”的逆否命題;
③“周長相同的圓面積相等”的逆命題;
④“若$\sqrt{2}x$為有理數(shù),則x為無理數(shù)”的逆否命題.
其中真命題序號為( 。
A.②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論可能成立的是( 。
A.m∥l,m⊥αB.m∥l,m∥αC.m⊥l,m⊥αD.m⊥l,m∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,無人機在離地面高200m的A處,觀測到山頂M處的仰角為15°、山腳C處的俯角為45°,已知∠MCN=60°,則山的高度MN為300m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的圖象如圖所示,則ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3000人進行調(diào)查,就“是否取消英語聽力”的問題進行了問卷調(diào)查統(tǒng)計,結(jié)果如表:
           態(tài)度
調(diào)查人群
應(yīng)該取消應(yīng)該保留無所謂
在校學生2100人120人y人
社會人士500人x人z人
已知在全體樣本中隨機抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.06.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取300人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人,然后從這6人中隨機抽取2人,求這2人中恰好有1個人為在校學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.從集合A={1,2,3,4,5,6,7,8,9,10}中任取兩個數(shù),欲使取到的一個數(shù)大于k,另一個數(shù)小于k(其中k∈A)的概率為$\frac{2}{5}$,則k=4或7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤8}\\{x≥1}\end{array}\right.$,則z=2x+y的最小值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2(an≠0),0<a1<a6=1,則使不等式a1-$\frac{1}{{a}_{1}}$+a2-$\frac{1}{{a}_{2}}$+…+an-$\frac{1}{{a}_{n}}$≤0恒成立的n的最大值是11.

查看答案和解析>>

同步練習冊答案