10.($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2的展開式中的常數(shù)項(xiàng)為3.(用數(shù)字作答)

分析 在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).

解答 解:($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2 =${(\sqrt{\frac{x}{2}}+\sqrt{\frac{1}{x}})}^{4}$ 的展開式的通項(xiàng)公式為Tr+1=${C}_{4}^{r}$•${(\frac{1}{2})}^{\frac{4-r}{2}}$•x2-r,
令2-r=0,求得r=2,可得展開式中的常數(shù)項(xiàng)為${C}_{4}^{2}$•$\frac{1}{2}$=3,
故答案為:3.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=sinx(0≤x≤π)與直線$y=\frac{1}{2}$圍成的封閉圖形的面積是$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.奇函數(shù)f(x)的定義域?yàn)镽.若f(x+2)為偶函數(shù),且f(1)=1,則f(5)+f(8)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知平行六面體ABCD-A1B1C1D1,M為A1C1與B1D1的交點(diǎn),化簡下列向量表達(dá)式:
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線l與雙曲線C的左、右兩支分別相交于點(diǎn)P,Q,若△PQF2是以∠Q為直角的等腰直角三角形,則雙曲線C的離心率是$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的單調(diào)增區(qū)間為[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=sin(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$]的值域是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),若線段OA的中垂線與直線y=x的交點(diǎn)P恰在橢圓C上,且△OAP的面積為3.
(1)求橢圓C的方程;
(2)設(shè)直線1:y=kx+m與橢圓C交于M、N兩點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),若△BMN是以MN為底邊的等腰三角形,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cos2x+2sinxcosx-sin2x,求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案