2.函數(shù)y=sin(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$]的值域是[$\frac{1}{2}$,1].

分析 由條件利用正弦函數(shù)的定義域和值域求得f(x)的值域.

解答 解:由x∈[0,$\frac{π}{2}$],可得x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],∴函數(shù)y=sin(x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
故答案為:[$\frac{1}{2}$,1].

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等腰梯形ABCD,上底CD=1,腰AD=CB=$\sqrt{2}$,下底AB=3,以下底所在直線為x軸,則由斜二側(cè)畫法畫出的直觀圖A′B′C′D′的面積為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在長(zhǎng)方體體ABCD-A1B1C1D1中,O為AC的中點(diǎn).
(1)化簡(jiǎn):$\overrightarrow{{A}_{1}O}$-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$;
(2)設(shè)E是棱DD1上的點(diǎn),且$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,若$\overrightarrow{EO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,試求實(shí)數(shù)x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2的展開式中的常數(shù)項(xiàng)為3.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=1,且Sn2=n2an+Sn-12,an≠0,n≥2,n∈N*
(1)證明:an+2-an=2(n∈N*);
(2)若an=log3bn,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin30°=$\frac{1}{2}$,sinx=-$\frac{1}{2}$,求出x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知某種物經(jīng)過1000年衰減后,含量變?yōu)樵瓉淼?0%,問多少年后該物質(zhì)含量為原來的一半?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖示,將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)y=g(x)的圖象,則g(x)的單凋遞增區(qū)間為( 。
A.[2kπ-$\frac{π}{6}$,2kπ$+\frac{π}{3}$]B.[2k$π+\frac{π}{3}$,2kπ$+\frac{5π}{6}$]C.[kπ$+\frac{π}{3}$,kπ$+\frac{5π}{6}$]D.[kπ$-\frac{π}{6}$,kπ$+\frac{π}{3}$],

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E、F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案