13.已知集合M={x|x2-4x<0},N={x||x|≤2},則M∪N=(  )
A.(-2,4)B.[-2,4)C.(0,2)D.(0,2]

分析 先求出集合M,N,再根據(jù)并集的定義求出即可.

解答 解:集合M={x|x2-4x<0}=(0,4),N={x||x|≤2}=[-2.2].
∴M∪N=[-2,4),
故選:B

點(diǎn)評(píng) 本題考查了集合得并集運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等比數(shù)列{an}的前n項(xiàng)和Sn,且a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,則$\frac{S_n}{a_n}$=( 。
A.4n-1B.4n-1C.2n-1D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在邊長(zhǎng)為1的菱形ABCD中,∠A=60°,E是線段CD上一點(diǎn),滿足|$\overrightarrow{CE}$|=2||$\overrightarrow{DE}$|,如圖所示,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{BE}$;
(2)在線段BC上是否存在一點(diǎn)F滿足AF⊥BE?若存在,確定F點(diǎn)的位置,并求|$\overrightarrow{AF}$|;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令g(x)=f(x)-(ax-1),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=-2,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若O是△ABC的重心,$\overrightarrow{AB}$$•\overrightarrow{AC}$=-2,A=120°,則|$\overrightarrow{AO}$|的最小值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx-$\frac{1}{x}$+ax,a∈R.
(Ⅰ)若函數(shù)f(x)在x=1處的切線與x軸平行,求a值;
(Ⅱ)討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(Ⅲ)定義:若函數(shù)h(x)在區(qū)間D上任意x1,x2都有$h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$,則稱函數(shù)h(x)是區(qū)間D上的凹函數(shù).設(shè)函數(shù)g(x)=x2f′(x),a>0,其中f′(x)是f(x)的導(dǎo)函數(shù).根據(jù)上述定義,判斷函數(shù)g(x)是否為其定義域內(nèi)的凹函數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合M={x|x2-5x+4≤0},N{x|x2-(a+1)x+a≤0},若M∪N=M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在三維空間直角坐標(biāo)系中,對(duì)其中任何一向量$\overrightarrow{x}$=(x1,x2,x3),定義范數(shù)||x||,它滿足以下性質(zhì):
①|(zhì)|x||≥0,當(dāng)且僅當(dāng)x為零向量時(shí),不等式取等號(hào);
②對(duì)任意實(shí)數(shù)λ,||λx||=|λ|•||x||(注:此處點(diǎn)乘號(hào)為普通的乘號(hào),無(wú)點(diǎn)乘意義);
③||x||+||y||≥||x+y||.
試求解以下問(wèn)題:
在二維平面直角坐標(biāo)系中,有向量$\overrightarrow{x}$=(x1,x2),下面給出的幾個(gè)表達(dá)式中,可能表示向量$\overrightarrow{x}$的范數(shù)是②⑤(把所有正確的答案的序號(hào)都填上).
①$\sqrt{{{x}_{1}}^{2}}$+2x22
②$\sqrt{{{x}_{1}}^{2}+2{{x}_{2}}^{2}}$;
③$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$;
④$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2}$;
⑤$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)棱錐的三視圖如圖所示,則它的體積為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案